45 deg Round-Corner Rib Heat Transfer Coefficient Measurements in a Square Channel

1999 ◽  
Vol 121 (2) ◽  
pp. 272-280 ◽  
Author(s):  
M. E. Taslim ◽  
A. Lengkong

Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of 45 deg, round-corner ribs. Three staggered rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested in a square channel for pitch-to-height ratios of 5, 8.5, and 10, and for two distinct thermal boundary conditions of heated and unheated channel wall. Comparisons were made between the surface-averaged heat transfer coefficients and channel friction factors for sharp-and round-corner ribs and 45 versus 90 deg ribs, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the ribroughened region were also compared. It was concluded that: (a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. (b) The general effect of rounding the rib corners was a decrease in both rib heat transfer coefficient and channel pressure drop. (c) For the highest blockage ratio ribs (e/Dh = 0.25), 90 deg ribs performed superior to 45 deg ribs. However, this trend reversed for smaller rib blockage ratios. (d) Heat transfer coefficients for the two smaller rib geometries (e/Dh = 0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. (e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. (f) Rib thermal performance decreased with the rib blockage ratio. The smallest rib geometry (e/Dh = 0.133) at a pitch-to-height ratio of 10 and the largest rib geometry (e/Dh = 0.25) at a pitch-to-height ratio of 5, both in midstream position, produced the highest and the lowest thermal performances, respectively.

Author(s):  
M. E. Taslim ◽  
A. Lengkong

Cooling channels, roughened with repeated ribs, are commonly employed as a means of cooling turbine blades. The increased level of mixing induced by these ribs enhances the convective heat transfer in the blade cooling cavities. Many previous investigations have focused on the heat transfer coefficient on the surfaces between these ribs and only a few studies report the heat transfer coefficient on the rib surfaces themselves. The present study investigated the heat transfer coefficient on the surfaces of 45°, round-comer ribs. Three staggered rib geometries corresponding to blockage ratios of 0.133, 0.167 and 0.25 were tested in a square channel for pitch-to-haight ratios of 5, 8.5 and 10, and for two distinct thermal boundary conditions of heated and unhealed channel wall. Comparisons were made between the surface averaged heat transfer coefficients and channel friction factors for sharp- and round-comer ribs and 45° versus 90° ribs, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region were also compared. It was concluded that: a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. b) General effect of rounding the rib corners was a decrease in both rib heat transfer coefficient and channel pressure drop. c) For the highest blockage ratio ribs (e/Dh = 0.25), 90° ribs performed superior to 45° ribs. However, this trend reversed for smaller rib blockage ratios. d) Heat transfer coefficients for the two smaller rib geometries (e/Dh = 0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. f) Rib thermal performance decreased with the rib blockage ratio. The smallest rib geometry (e/Dh = 0.133) at a pitch-to-height ratio of 10 and the largest rib geometry (e/Dh = 0.25) at a pitch-to-height ratio of 5, both in midstream position, produced the highest and the lowest thermal performances, respectively.


1997 ◽  
Vol 119 (2) ◽  
pp. 381-389 ◽  
Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of 13 tests to measure the rib surface-averaged heat transfer coefficient, hrib, in a square duct roughened with staggered 90 deg ribs. To investigate the effects that blockage ratio, e/Dh and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5, and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hfloor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1 The rib average heat transfer coefficient is much higher than that for the area between the ribs; 2 similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio; 3 a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested; 4 under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the midchannel positions, 5 the upstream-most rib average heat transfer coefficients decreased with the blockage ratio; and 6 thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


Author(s):  
M. E. Taslim ◽  
C. M. Wadsworth

Turbine blade cooling, a common practice in modern aircraft engines, is accomplished, among other methods, by passing the cooling air through an often serpentine passage in the core of the blade. Furthermore, to enhance the heat transfer coefficient, these passages are roughened with rib-shaped turbulence promoters (turbulators). Considerable data are available on the heat transfer coefficient on the passage surface between the ribs. However, the heat transfer coefficients on the surface of the ribs themselves have not been investigated to the same extent. In small aircraft engines with small cooling passages and relatively large ribs, the rib surfaces comprise a large portion of the passage heat transfer area. Therefore, an accurate account of the heat transfer coefficient on the rib surfaces is critical in the overall design of the blade cooling system. The objective of this experimental investigation was to conduct a series of thirteen tests to measure the rib surface-averaged heat transfer coefficient, in a square duct roughened with staggered 90° ribs. To investigate the effects that blockage ratio, e/Dh, and pitch-to-height ratio, S/e, have on hrib and passage friction factor, three rib geometries corresponding to blockage ratios of 0.133. 0.167 and 0.25 were tested for pitch-to-height ratios of 5, 7, 8.5 and 10. Comparisons were made between the rib average heat transfer coefficient and that on the wall surface between two ribs, hflor, reported previously. Heat transfer coefficients of the upstream-most rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It is concluded that: 1) the rib average heat transfer coefficient is much higher than that for the area between the ribs, 2) similar to the heat transfer coefficient on the surface between the ribs, the average rib heat transfer coefficient increases with the blockage ratio, 3) a pitch-to-height ratios of 8.5 consistently produced the highest rib average heat transfer coefficients amongst all tested, 4) under otherwise identical conditions, ribs in upstream-most position produced lower heat transfer coefficients than the mid-channel positions, 5) the upstream-most rib average heat transfer coefficients decreased with the blockage ratio, and 6) thermal performance decreased with increased blockage ratio. While a pitch-to-height ratio of 8.5 and 10 had the highest thermal performance for the smallest rib geometry, thermal performance of high blockage ribs did not change significantly with the pitch-to-height ratio.


1998 ◽  
Vol 120 (2) ◽  
pp. 376-385 ◽  
Author(s):  
G. J. Korotky ◽  
M. E. Taslim

Three staggered 90 deg rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested for pitch-to-height ratios of 5, 8.5, and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface-averaged heat transfer coefficients and friction factors for ribs with rounded corners and those with sharp corners, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It was concluded that: (a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. For the sharp-corner ribs, the rib average heat transfer coefficient increased with blockage ratio. However, when the corners were rounded, the trend depended on the level of roundness. (b) High-blockage-ratio (e/Dh = 0.25) ribs were insensitive to the pitch-to-height ratio. For the other two blockage ratios, the pitch-to-height ratio of 5 produced the lowest heat transfer coefficient. Results of the other two pitch-to-height ratios were very close, with the results of S/e = 10 slightly higher than those of S/e = 8.5. (c) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients for all cases except that of the smallest blockage ratio with S/e of 5. In that position, for the rib geometries tested, while the sharp-corner rib average heat transfer coefficients increased with the blockage ratio, the trend of the round-corner ribs depended on the level of roundness, r/e. (d) Thermal performance decreased with the blockage ratio. While the smallest rib geometry at a pitch-to-height ratio of 10 had the highest thermal performance, thermal performance of high blockage ribs at a pitch-to-height ratio of 5 was the lowest. (e) The general effects of rounding were a decrease in heat transfer coefficient for the midstream ribs and an increase in heat transfer coefficient for ribs in the furthest upstream position.


Author(s):  
M. E. Taslim ◽  
A. Rahman ◽  
S. D. Spring

Liquid crystals are used in this experimental investigation to measure the heat transfer coefficient in a spanwise rotating channel with two opposite rib-roughened walls. The ribs (also called turbulence promoters or turbulators) are configured in a staggered arrangement with an angle of attack to the mainstream flow, α, of 90° for all cases. Results are presented for three values of turbulator blockage ratio, e/Dh (0.1333, 0.25, 0.333) and for a range of Reynolds numbers from 15,000 to 50,000 while the test section is rotated at different speeds to give Rotational Reynolds numbers between 450 and 1800. The Rossby number range is 10 to 100 (Rotation number of 0.1 to 0.01). The effect of turbulator blockage ratios on heat transfer enhancement is also investigated. Comparisons are made between the results of geometrically identical stationary and rotating passages of otherwise similar operating conditions. The results indicate that a significant enhancement in heat transfer is achieved in both the stationary and rotating cases, when the surfaces are roughened with turbulators. For the rotating case, a maximum increase over that of the stationary case of about 45% in the heat transfer coefficient is seen for a blockage ratio of 0.133 on the trailing surface in the direction of rotation and the minimum is a decrease of about 6% for a blockage ratio of 0.333 on the leading surface, for the range of rotation numbers tested. The technique of using liquid crystals to determine heat transfer coefficients in this investigation proved to be an effective and accurate method especially for nonstationary test sections.


Author(s):  
M. E. Taslim ◽  
A. Lengkong

For high blockage ribs with large heat transfer areas, commonly used in small gas turbine blades, the rib heat transfer is a significant portion of the overall heat transfer in the cooling passages. Three staggered 45° rib geometries corresponding to blockage ratios of 0.133, 0.167 and 0.25 were tested in a square channel for pitch-to-height ratios of 5, 8.5 and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface averaged heat transfer coefficients and friction factors for 45° ribs, and 90° ribs reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region were also compared. It was concluded that: a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. b) Except for two cases corresponding to the highest blockage ribs mounted at pitch-to-height ratios of 8.5 and 10 for which the heat transfer results of 45° ribs were very close to those of 90° ribs, 45° ribs produced higher heat transfer coefficients than 90° ribs. c) At pitch-to-height ratios of 8.5 and 10, all 45° ribs produced lower friction factors than 90° ribs. However, when they were brought closer to each other (S/e=5), they produced higher friction factors than 90° ribs. d) Heat transfer coefficients for the two smaller rib geometries (e/Dh=0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. f) Rib thermal performance decreased with the rib blockage ratio. For both angles of attack, the smallest rib geometry in the midstream position and at a pitch-to-height ratio of 10 had the highest thermal performance, and the highest blockage rib in the furthest upstream position produced the lowest thermal performance.


Author(s):  
G. J. Korotky ◽  
M. E. Taslim

Three staggered 90° rib geometries corresponding to blockage ratios of 0.133, 0.167 and 0.25 were tested for pitch-to-height ratios of 5, 8.5 and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface averaged heat transfer coefficients and friction factors for ribs with rounded corners and those with sharp comers, reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region of the passage wall were also compared. It was concluded that: a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. For the sharp-corner ribs, the rib average heat transfer coefficient increased with blockage ratio. However, when the corners were rounded, the trend depended on the level of roundness. b) High blockage ratio (e/Dh=0.25) ribs were insensitive to the pitch-to-height ratio. For the other two blockage ratios, the pitch-to-height ratio of 5 produced the lowest heat transfer coefficient. Results of the other two pitch-to-height ratios were very close, with the results of S/e = 10 slightly higher than those of S/e=8.5. c) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients for all cases except that of the smallest blockage ratio with S/e of 5. In that position, for the rib geometries tested, while the sharp-comer rib average heat transfer coefficients increased with the blockage ratio, the trend of the round-corner ribs depended on the level of roundness, r/e. d) Thermal performance decreased with the blockage ratio. While the smallest rib geometry at a pitch-to-height ratio of 10 had the highest thermal performance, thermal performance of high blockage ribs at a pitch-to-height ratio of 5 was the lowest. e) The general effects of rounding were a decrease in heat transfer coefficient for the midstream ribs and an increase in heat transfer coefficient for ribs in the furthest upstream position.


1991 ◽  
Vol 113 (1) ◽  
pp. 75-82 ◽  
Author(s):  
M. E. Taslim ◽  
A. Rahman ◽  
S. D. Spring

Liquid crystals are used in this experimental investigation to measure the heat transfer coefficient in a spanwise rotating channel with two opposite rib-roughened walls. The ribs (also called turbulence promoters or turbulators) are configured in a staggered arrangement with an angle of attack to the mainstream flow, α, of 90 deg for all cases. Results are presented for the three values of turbulator blockage ratio e/Dh (0.1333, 0.25, 0.333) and for a range of Reynolds numbers from 15,000 to 50,000 while the test section is rotated at different speeds to give rotational Reynolds numbers between 450 and 1800. The Rossby number range is 10 to 100 (rotation number of 0.1 to 0.01). The effect of turbulator blockage ratios on heat transfer enhancement is also investigated. Comparisons are made between the results of geometrically identical stationary and rotating passage of otherwise similar operating conditions. The results indicate that a significant enhancement in heat transfer is achieved in both the stationary and rotating cases, when the surfaces are roughened with turbulators. For the rotating case, a maximum increase over that of the stationary case of about 45 percent in the heat transfer coefficient is seen for a blockage ratio of 0.133 on the trailing surface in the direction of rotation and the minimum is a decrease of about 6 percent for a blockage ratio of 0.333 on the leading surface, for the range of rotation numbers tested. The technique of using liquid crystals to determine heat transfer coefficients in this investigation proved to be an effective and accurate method especially for nonstationary test sections.


1998 ◽  
Vol 120 (3) ◽  
pp. 571-580 ◽  
Author(s):  
M. E. Taslim ◽  
A. Lengkong

For high-blockage ribs with large heat transfer areas, commonly used in small gas turbine blades, the rib heat transfer is a significant portion of the overall heat transfer in the cooling passages. Three staggered 45 deg rib geometries corresponding to blockage ratios of 0.133, 0.167, and 0.25 were tested in a square channel for pitch-to-height ratios of 5, 8.5, and 10, and for two distinct thermal boundary conditions of heated and unheated channel walls. Comparisons were made between the surface-averaged heat transfer coefficients and friction factors for 45 deg ribs, and 90 deg ribs reported previously. Heat transfer coefficients of the furthest upstream rib and that of a typical rib located in the middle of the rib-roughened region were also compared. It was concluded that: (a) For the geometries tested, the rib average heat transfer coefficient was much higher than that for the area between the ribs. (b) Except for two cases corresponding to the highest blockage ribs mounted at pitch-to-height ratios of 8.5 and 10 for which the heat transfer results of 45 deg ribs were very close to those of 90 deg ribs, 45 deg ribs produced higher heat transfer coefficients than 90 deg ribs. (c) At pitch-to-height ratios of 8.5 and 10, all 45 deg ribs produced lower friction factors than 90 deg ribs. However, when they were brought closer to each other (S/e = 5), they produced higher friction factors than 90 deg ribs. (d) Heat transfer coefficients for the two smaller rib geometries (e/Dh = 0.133 and 0.167) did not vary significantly with the pitch-to-height ratio in the range tested. However, the heat transfer coefficient for the high blockage rib geometry increased significantly as the ribs were brought closer to each other. (e) Under otherwise identical conditions, ribs in the furthest upstream position produced lower heat transfer coefficients than those in the midstream position. (f) Rib thermal performance decreased with the rib blockage ratio. For both angles of attack, the smallest rib geometry in the midstream position and at a pitch-to-height ratio of 10 had the highest thermal performance, and the highest blockage rib in the furthest upstream position produced the lowest thermal performance.


2005 ◽  
Vol 2005 (1) ◽  
pp. 60-66 ◽  
Author(s):  
M. E. Taslim ◽  
H. Liu

Experimental investigations have shown that the enhancement in heat transfer coefficients for air flow in a channel roughened with low blockage(e/Dh<0.1)angled ribs is on the average higher than that roughened with90∘ribs of the same geometry. Secondary flows generated by the angled ribs are believed to be responsible for these higher heat transfer coefficients. These secondary flows also create a spanwise variation in the heat transfer coefficient on the roughened wall with high levels of the heat transfer coefficient at one end of the rib and low levels at the other end. In an effort to investigate the thermal behavior of the angled ribs at elevated Reynolds numbers, a combined numerical and experimental study was conducted. In the numerical part, a square channel roughened with45∘ribs of four blockage ratios(e/Dh)of0.10,0.15,0.20, and0.25, each for a fixed pitch-to-height ratio(P/e)of10, was modeled. Sharp as well as round-corner ribs (r/e=0and0.25) in a staggered arrangement were studied. The numerical models contained the smooth entry and exit regions to simulate exactly the tested geometries. A pressure-correction-based, multiblock, multigrid, unstructured/adaptive commercial software was used in this investigation. Standard high Reynolds numberk−εturbulence model in conjunction with the generalized wall function for most parts was used for turbulence closure. The applied thermal boundary conditions to the CFD models matched the test boundary conditions. In the experimental part, a selected number of these geometries were built and tested for heat transfer coefficients at elevated Reynolds numbers up to 150 000, using a liquid crystal technique. Comparisons between the test and numerically evaluated results showed reasonable agreements between the two for most cases. Test results showed that (a)45∘angled ribs with high blockage ratios(>0.2)at elevated Reynolds numbers do not exhibit a good thermal performance, that is, beyond this blockage ratio, the heat transfer coefficient decreases with the rib blockage and (b) CFD could be considered as a viable tool for the prediction of heat transfer coefficients in a rib-roughened test section.


Sign in / Sign up

Export Citation Format

Share Document