Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effects: Part I—Experimental Data

1999 ◽  
Vol 121 (3) ◽  
pp. 398-407 ◽  
Author(s):  
G. J. Walker ◽  
J. D. Hughes ◽  
W. J. Solomon

Periodic wake-induced transition on the outlet stator of a 1.5-stage axial compressor is examined using hot-film arrays on both the suction and pressure surfaces. The time-mean surface pressure distribution is varied by changing the blade incidence, while the free-stream disturbance field is altered by clocking of the stator relative to an inlet guide vane row. Ensemble-averaged plots of turbulent intermittency and relaxation factor (extent of calmed flow following the passage of a turbulent spot) are presented. These show the strength of periodic wake-induced transition phenomena to be significantly influenced by both incidence and clocking effects. The nature and extent of transition by other modes (natural, bypass, and separated flow transition) are altered accordingly. Leading edge and midchord separation bubbles are affected in a characteristically different manner by changing free-stream periodicity. There are noticeable differences between suction and pressure surface transition behavior, particularly as regards the strength and extent of calming. In Part II of this paper, the transition onset observations from the compressor stator are used to evaluate the quasi-steady application of conventional transition correlations to predict unsteady transition onset on the blading of an embedded axial compressor stage.

Author(s):  
G. J. Walker ◽  
J. D. Hughes ◽  
W. J. Solomon

Periodic wake-induced transition on the outlet stator of a 1.5 stage axial compressor is examined using hot-film arrays on both the suction and pressure surfaces. The time-mean surface pressure distribution is varied by changing the blade incidence, while the freestream disturbance field is altered by clocking of the stator relative to an inlet guide vane row. Ensemble average plots of turbulent intermittency and relaxation factor (extent of calmed flow following the passage of a turbulent spot) are presented. These show the strength of periodic wake-induced transition phenomena to be significantly influenced by both incidence and clocking effects. The nature and extent of transition by other modes (natural, bypass and separated flow transition) are altered accordingly. Leading edge and mid-chord separation bubbles are affected in a characteristically different manner by changing freestream periodicity. There are noticeable differences between suction and pressure surface transition behavior, particularly as regards the strength and extent of calming. In Part II of this paper, the transition onset observations from the compressor stator are used to evaluate the quasi-steady application of conventional transition correlations to predict unsteady transition onset on the blading of an embedded axial compressor stage.


Author(s):  
J. D. Hughes ◽  
G. J. Walker

Data from a surface hot-film array on the outlet stator of a 1.5 stage axial compressor are analyzed to look for direct evidence of natural transition phenomena. An algorithm is developed to identify instability waves within the Tollmien Schlichting (T-S) frequency range. The algorithm is combined with a turbulent intermittency detection routine to produce space∼time diagrams showing the probability of instability wave occurrence prior to regions of turbulent flow. The paper compares these plots for a range of blade loading, with free-stream conditions corresponding to the maximum and minimum inflow disturbance periodicity produced by inlet guide vane clocking. Extensive regions of amplifying instability waves are identified in nearly all cases. The implications for transition prediction in decelerating flow regions on axial turbomachine blades are discussed.


1998 ◽  
Vol 120 (4) ◽  
pp. 695-704 ◽  
Author(s):  
G. J. Walker ◽  
J. D. Hughes ◽  
I. Ko¨hler ◽  
W. J. Solomon

The interaction between wakes of an adjacent rotor–stator or stator–rotor blade row pair in an axial turbomachine is known to produce regular spatial variations in both the time-mean and unsteady flow fields in a frame relative to the upstream member of the pair. This paper examines the influence of such changes in the free-stream disturbance field on the viscous losses of a following blade row. Hot-wire measurements are carried out downstream of the outlet stator in a 1.5-stage axial compressor having equal blade numbers in the inlet guide vane (IGV) and stator rows. Clocking of the IGV row is used to vary the disturbance field experienced by the stator blades; the influence on stator wake properties is evaluated. The magnitude of periodic fluctuations in ensemble-averaged stator wake thickness is significantly influenced by IGV wake-rotor wake interaction effects. The changes in time-mean stator losses appear marginal.


Author(s):  
Alan D. Henderson ◽  
Gregory J. Walker ◽  
Jeremy D. Hughes

The influence of free-stream turbulence on wake dispersion and boundary layer transition processes has been studied in a 1.5-stage axial compressor. An inlet grid was used to produce turbulence characteristics typical of an embedded stage in a multistage machine. The grid turbulence strongly enhanced the dispersion of inlet guide vane (IGV) wakes. This modified the interaction of IGV and rotor wakes, leading to a significant decrease in periodic unsteadiness experienced by the downstream stator. These observations have important implications for the prediction of clocking effects in multistage machines. Boundary layer transition characteristics on the outlet stator were studied with a surface hot-film array. Observations with grid turbulence were compared with those for the natural low turbulence inflow to the machine. The transition behavior under low turbulence inflow conditions with the stator blade element immersed in the dispersed IGV wakes closely resembled the behavior with elevated grid turbulence. It is concluded that with appropriate alignment, the blade element behavior in a 1.5-stage axial machine can reliably indicate the blade element behavior of an embedded row in a multistage machine.


2005 ◽  
Vol 128 (1) ◽  
pp. 150-157 ◽  
Author(s):  
Alan D. Henderson ◽  
Gregory J. Walker ◽  
Jeremy D. Hughes

The influence of free-stream turbulence on wake dispersion and boundary layer transition processes has been studied in a 1.5-stage axial compressor. An inlet grid was used to produce turbulence characteristics typical of an embedded stage in a multistage machine. The grid turbulence strongly enhanced the dispersion of inlet guide vane (IGV) wakes. This modified the interaction of IGV and rotor wakes, leading to a significant decrease in periodic unsteadiness experienced by the downstream stator. These observations have important implications for the prediction of clocking effects in multistage machines. Boundary layer transition characteristics on the outlet stator were studied with a surface hot-film array. Observations with grid turbulence were compared with those for the natural low turbulence inflow to the machine. The transition behavior under low turbulence inflow conditions with the stator blade element immersed in the dispersed IGV wakes closely resembled the behavior with elevated grid turbulence. It is concluded that with appropriate alignment, the blade element behavior in a 1.5-stage axial machine can reliably indicate the blade element behavior of an embedded row in a multistage machine.


Author(s):  
G. J. Walker ◽  
J. D. Hughes ◽  
I. Köhler ◽  
W. J. Solomon

The interaction between wakes of an adjacent rotor-stator or stator-rotor blade row pair in an axial turbomachine is known to produce regular spatial variations in both the time-mean and unsteady flow fields in a frame relative to the upstream member of the pair. This paper examines the influence of such changes in the free-stream disturbance field on the viscous losses of a following blade row. Hot-wire measurements are carried out downstream of the outlet stator in a 1.5-stage axial compressor having equal blade numbers in the inlet guide vane (IGV) and stator rows. Clocking of the IGV row is used to vary the disturbance field experienced by the stator blades: the influence on stator wake properties is evaluated. The magnitude of periodic fluctuations in ensemble-average stator wake thickness is significantly influenced by IGV wake-rotor wake interaction effects. The changes in time-mean stator losses appear marginal.


2000 ◽  
Vol 123 (2) ◽  
pp. 392-401 ◽  
Author(s):  
J. D. Hughes ◽  
G. J. Walker

Data from a surface hot-film array on the outlet stator of a 1.5-stage axial compressor are analyzed to look for direct evidence of natural transition phenomena. An algorithm is developed to identify instability waves within the Tollmien–Schlichting (T–S) frequency range. The algorithm is combined with a turbulent intermittency detection routine to produce space-time diagrams showing the probability of instability wave occurrence prior to regions of turbulent flow. The paper compares these plots for a range of blade loading, with free-stream conditions corresponding to the maximum and minimum inflow disturbance periodicity produced by inlet guide vane clocking. Extensive regions of amplifying instability waves are identified in nearly all cases. The implications for transition prediction in decelerating flow regions on axial turbomachine blades are discussed.


Author(s):  
Milan Banjac ◽  
Milan V. Petrovic ◽  
Alexander Wiedermann

This paper describes a new universal algebraic model for the estimation of flow deflection and losses in axial compressor inlet guide vane devices. The model deals with nominal flow and far-off-design operating conditions in connection with large stagger angle adjustments. The first part of the model considers deflection and losses in 2D cascades, taking into account the main cascade geometry parameters and operating conditions, such as Mach number and stagger adjustment. The second part of the model deals with additional deviation and losses due to secondary flow caused by the endwall viscous effects and by the trailing vortices. The model is developed for NACA65 airfoils, NACA63-A4K6 airfoils and airfoils having an NACA65 thickness distribution on a circular-arc camber line. It is suitable for application in 1D or 2D through-flow calculations for design and analysis cases. The development of the method is based on systematic CFD flow calculations for various cascade geometries and operating parameters. The comparison of correlation results with experimental data for several test cases shows good agreement.


2021 ◽  
Author(s):  
Stephanie Waters

This report's objective is to reduce the total pressure loss coefficient of an inlet guide vane (IGV) at high stagger angles and to therefore reduce the overall fuel consumption of an aircraft engine. IGVs are usually optimized for cruise where the stagger angle is approximately 0 degrees. To reduce losses, four different methodologies were tested: increasing the leading edge radius, increasing the camber, creating a "drooped nose", and creating an "S" curvature distribution. A baseline IGV was chosen and modified using these methodologies to create 10 new IGV designs. CFX was used to perform a CFD analysis on all 11 IGV designs at 5 stagger angles from 0 to 60 degrees. Typical missions were analyzed and it was discovered that the new designs decreased the fuel consumption of the engine. The IGV with the "S" curvature and thicker leading edge was the best and decreased the fuel consumption by 0.24%.


Author(s):  
John Leggett ◽  
Richard Sandberg

Abstract The presence of pressure waves in an axial compressor cascade are ubiquitous and have been known and investigated for some time. Much of the work to date focuses on compressor acoustics and vibration, which is largely due to wake blade interactions and trailing edge shedding. However, it has been shown on free aerofoils that pressure waves can be produced from volume sources, such as separation, at non-negligible amplitudes. The work presented here highlights the presence of pressure waves emanating from the suction surface transition of a NACA 65 axial compressor cascade, and briefly investigates and details the influence different free-stream disturbances have on the frequency of the pressure waves produced.


Sign in / Sign up

Export Citation Format

Share Document