Natural Transition Phenomena on an Axial Compressor Blade

Author(s):  
J. D. Hughes ◽  
G. J. Walker

Data from a surface hot-film array on the outlet stator of a 1.5 stage axial compressor are analyzed to look for direct evidence of natural transition phenomena. An algorithm is developed to identify instability waves within the Tollmien Schlichting (T-S) frequency range. The algorithm is combined with a turbulent intermittency detection routine to produce space∼time diagrams showing the probability of instability wave occurrence prior to regions of turbulent flow. The paper compares these plots for a range of blade loading, with free-stream conditions corresponding to the maximum and minimum inflow disturbance periodicity produced by inlet guide vane clocking. Extensive regions of amplifying instability waves are identified in nearly all cases. The implications for transition prediction in decelerating flow regions on axial turbomachine blades are discussed.

2000 ◽  
Vol 123 (2) ◽  
pp. 392-401 ◽  
Author(s):  
J. D. Hughes ◽  
G. J. Walker

Data from a surface hot-film array on the outlet stator of a 1.5-stage axial compressor are analyzed to look for direct evidence of natural transition phenomena. An algorithm is developed to identify instability waves within the Tollmien–Schlichting (T–S) frequency range. The algorithm is combined with a turbulent intermittency detection routine to produce space-time diagrams showing the probability of instability wave occurrence prior to regions of turbulent flow. The paper compares these plots for a range of blade loading, with free-stream conditions corresponding to the maximum and minimum inflow disturbance periodicity produced by inlet guide vane clocking. Extensive regions of amplifying instability waves are identified in nearly all cases. The implications for transition prediction in decelerating flow regions on axial turbomachine blades are discussed.


Author(s):  
Alan D. Henderson ◽  
Gregory J. Walker ◽  
Jeremy D. Hughes

The influence of free-stream turbulence on wake dispersion and boundary layer transition processes has been studied in a 1.5-stage axial compressor. An inlet grid was used to produce turbulence characteristics typical of an embedded stage in a multistage machine. The grid turbulence strongly enhanced the dispersion of inlet guide vane (IGV) wakes. This modified the interaction of IGV and rotor wakes, leading to a significant decrease in periodic unsteadiness experienced by the downstream stator. These observations have important implications for the prediction of clocking effects in multistage machines. Boundary layer transition characteristics on the outlet stator were studied with a surface hot-film array. Observations with grid turbulence were compared with those for the natural low turbulence inflow to the machine. The transition behavior under low turbulence inflow conditions with the stator blade element immersed in the dispersed IGV wakes closely resembled the behavior with elevated grid turbulence. It is concluded that with appropriate alignment, the blade element behavior in a 1.5-stage axial machine can reliably indicate the blade element behavior of an embedded row in a multistage machine.


Author(s):  
G. J. Walker ◽  
J. D. Hughes ◽  
W. J. Solomon

Periodic wake-induced transition on the outlet stator of a 1.5 stage axial compressor is examined using hot-film arrays on both the suction and pressure surfaces. The time-mean surface pressure distribution is varied by changing the blade incidence, while the freestream disturbance field is altered by clocking of the stator relative to an inlet guide vane row. Ensemble average plots of turbulent intermittency and relaxation factor (extent of calmed flow following the passage of a turbulent spot) are presented. These show the strength of periodic wake-induced transition phenomena to be significantly influenced by both incidence and clocking effects. The nature and extent of transition by other modes (natural, bypass and separated flow transition) are altered accordingly. Leading edge and mid-chord separation bubbles are affected in a characteristically different manner by changing freestream periodicity. There are noticeable differences between suction and pressure surface transition behavior, particularly as regards the strength and extent of calming. In Part II of this paper, the transition onset observations from the compressor stator are used to evaluate the quasi-steady application of conventional transition correlations to predict unsteady transition onset on the blading of an embedded axial compressor stage.


2005 ◽  
Vol 128 (1) ◽  
pp. 150-157 ◽  
Author(s):  
Alan D. Henderson ◽  
Gregory J. Walker ◽  
Jeremy D. Hughes

The influence of free-stream turbulence on wake dispersion and boundary layer transition processes has been studied in a 1.5-stage axial compressor. An inlet grid was used to produce turbulence characteristics typical of an embedded stage in a multistage machine. The grid turbulence strongly enhanced the dispersion of inlet guide vane (IGV) wakes. This modified the interaction of IGV and rotor wakes, leading to a significant decrease in periodic unsteadiness experienced by the downstream stator. These observations have important implications for the prediction of clocking effects in multistage machines. Boundary layer transition characteristics on the outlet stator were studied with a surface hot-film array. Observations with grid turbulence were compared with those for the natural low turbulence inflow to the machine. The transition behavior under low turbulence inflow conditions with the stator blade element immersed in the dispersed IGV wakes closely resembled the behavior with elevated grid turbulence. It is concluded that with appropriate alignment, the blade element behavior in a 1.5-stage axial machine can reliably indicate the blade element behavior of an embedded row in a multistage machine.


1999 ◽  
Vol 121 (3) ◽  
pp. 398-407 ◽  
Author(s):  
G. J. Walker ◽  
J. D. Hughes ◽  
W. J. Solomon

Periodic wake-induced transition on the outlet stator of a 1.5-stage axial compressor is examined using hot-film arrays on both the suction and pressure surfaces. The time-mean surface pressure distribution is varied by changing the blade incidence, while the free-stream disturbance field is altered by clocking of the stator relative to an inlet guide vane row. Ensemble-averaged plots of turbulent intermittency and relaxation factor (extent of calmed flow following the passage of a turbulent spot) are presented. These show the strength of periodic wake-induced transition phenomena to be significantly influenced by both incidence and clocking effects. The nature and extent of transition by other modes (natural, bypass, and separated flow transition) are altered accordingly. Leading edge and midchord separation bubbles are affected in a characteristically different manner by changing free-stream periodicity. There are noticeable differences between suction and pressure surface transition behavior, particularly as regards the strength and extent of calming. In Part II of this paper, the transition onset observations from the compressor stator are used to evaluate the quasi-steady application of conventional transition correlations to predict unsteady transition onset on the blading of an embedded axial compressor stage.


Author(s):  
Milan Banjac ◽  
Milan V. Petrovic ◽  
Alexander Wiedermann

This paper describes a new universal algebraic model for the estimation of flow deflection and losses in axial compressor inlet guide vane devices. The model deals with nominal flow and far-off-design operating conditions in connection with large stagger angle adjustments. The first part of the model considers deflection and losses in 2D cascades, taking into account the main cascade geometry parameters and operating conditions, such as Mach number and stagger adjustment. The second part of the model deals with additional deviation and losses due to secondary flow caused by the endwall viscous effects and by the trailing vortices. The model is developed for NACA65 airfoils, NACA63-A4K6 airfoils and airfoils having an NACA65 thickness distribution on a circular-arc camber line. It is suitable for application in 1D or 2D through-flow calculations for design and analysis cases. The development of the method is based on systematic CFD flow calculations for various cascade geometries and operating parameters. The comparison of correlation results with experimental data for several test cases shows good agreement.


1998 ◽  
Vol 120 (4) ◽  
pp. 695-704 ◽  
Author(s):  
G. J. Walker ◽  
J. D. Hughes ◽  
I. Ko¨hler ◽  
W. J. Solomon

The interaction between wakes of an adjacent rotor–stator or stator–rotor blade row pair in an axial turbomachine is known to produce regular spatial variations in both the time-mean and unsteady flow fields in a frame relative to the upstream member of the pair. This paper examines the influence of such changes in the free-stream disturbance field on the viscous losses of a following blade row. Hot-wire measurements are carried out downstream of the outlet stator in a 1.5-stage axial compressor having equal blade numbers in the inlet guide vane (IGV) and stator rows. Clocking of the IGV row is used to vary the disturbance field experienced by the stator blades; the influence on stator wake properties is evaluated. The magnitude of periodic fluctuations in ensemble-averaged stator wake thickness is significantly influenced by IGV wake-rotor wake interaction effects. The changes in time-mean stator losses appear marginal.


1984 ◽  
Vol 106 (2) ◽  
pp. 337-345
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram

The annulus wall boundary layer inside the blade passage of the inlet guide vane (IGV) passage of a low-speed axial compressor stage was measured with a miniature five-hole probe. The three-dimensional velocity and pressure fields were measured at various axial and tangential locations. Limiting streamline angles and static pressures were also measured on the casing of the IGV passage. Strong secondary vorticity was developed. The data were analyzed and correlated with the existing velocity profile correlations. The end wall losses were also derived from these data.


Author(s):  
Kai Becker ◽  
Martin Lawerenz ◽  
Christian Voß ◽  
Reinhard Mo¨nig

In combination with a multi-objective 3D optimization strategy, a linked CFD-solver is presented in this paper, combining 3D-Reynolds-averaged-Navier-Stokes and an inviscid throughflow method. It enables the adjustment of the 3D boundary conditions for any design variation and contains new options for configuring the objective functions. The link is achieved by matching the flow information between both CFD codes in an iterative procedure. Compared to an individual 3D-CFD calculation, the convergence does not take significantly longer. The potential of the linked CFD-solver is demonstrated in a multi-objective optimization for one blade row to be optimized and one operating point at a 3-stage axial compressor with inlet guide vane. Within the optimization, the objective functions are formulated, so that the performance of the axial compressor is enhanced in addition to the improved efficiency of the 3D-cascade.


Author(s):  
Jack L. Kerrebrock ◽  
Alan H. Epstein ◽  
Ali A. Merchant ◽  
Gerald R. Guenette ◽  
David Parker ◽  
...  

The design and test of a two-stage, vaneless, aspirated counter-rotating fan is presented in this paper. The fan nominal design objectives were a pressure ratio of 3:1 and adiabatic efficiency of 87%. A pressure ratio of 2.9 at 89% efficiency was measured in the tests. The configuration consists of a counter-swirl-producing inlet guide vane, followed by a high tip speed (1450 feet/sec) non-aspirated rotor, and a counter-rotating low speed (1150 feet/sec) aspirated rotor. The lower tip speed and lower solidity of the second rotor results in a blade loading above conventional limits, but enables a balance between the shock loss and viscous boundary layer loss, the latter of which can be controlled by aspiration. The aspiration slot on the second rotor suction surface extends from the hub up to 80% span, with a conventional tip clearance, and the bleed flow is discharged at the hub. The fan was tested in a short duration blowdown facility. Particular attention was given to the design of the instrumentation to obtain efficiency measurements within 0.5 percentage points. High response static pressure measurements were taken between the rotors and downstream of the fan to determine the stall behavior. Pressure ratio, mass flow, and efficiency on speedlines from 90% to 102% of the design speed are presented and discussed along with comparison to CFD predictions and design intent. The results presented here complement those presented earlier for two aspirated fan stages with tip shrouds, extending the validated design space for aspirated compressors to include designs with conventional unshrouded rotors and with inward removal of the aspirated flow.


Sign in / Sign up

Export Citation Format

Share Document