An Analysis of Pipe Flange Connections Using Epoxy Adhesives/Anaerobic Sealant Instead of Gaskets

1995 ◽  
Vol 117 (4) ◽  
pp. 298-304 ◽  
Author(s):  
T. Sawa ◽  
R. Sasaki ◽  
M. Yoneno

This paper deals with the strength and the sealing performance of pipe flange connections combining the bonding force of adhesives with the clamping force of bolts. The epoxy adhesives or anaerobic sealants are bonded at the interface partially instead of gaskets in pipe flange connections. The stress distribution in the epoxy adhesives (anaerobic sealant), which governs the sealing performance, and the variations in axial bolt force are analyzed, using an axisymmetrical theory of elasticity, when an internal pressure is applied to a connection in which two pipe flanges are clamped together by bolts and nuts with an initial clamping force after being joined by epoxy adhesives or anaerobic sealant. In addition, a method for estimating the strength of the combination connection is demonstrated. Experiments are performed and the analytical results are consistent with the experimental results concerning the variation in axial bolt force and the strength of combination connections. It can be seen that the strength of connections increases with a decrease in the bolt pitch circle diameter. Furthermore, it is seen that the sealing performance of such combination connections in which the interface is bonded partially is improved over that of pipe flange connections with metallic gaskets.

1999 ◽  
Author(s):  
Masahiro Yoneno ◽  
Toshiyuki Sawa ◽  
Tomoya Ishihara ◽  
Hiroshi Kawamura

Abstract The stresses of joints combining the bonding force of adhesives with the clamping force of bolts is analyzed using axisymmetrical theory of elasticity and FEM, when an internal pressure is applied to the combination joint in which two pipe flanges are clamped together by bolts and nuts with an initial clamping force after being joined by anaerobic sealant. The anaerobic sealant is applied at the interfaces partially instead of formed gaskets in pipe flange connections. In the numerical calculations, the effect of the bonding area and position and Young’s modulus of sealant (epoxy adhesive) on the contact stress at the interfaces are clarified. In addition, using the interface stress distribution, the strength of the combination joint is predicted. Experiments are performed and the analytical results are consistent with the experimental results concerning the variation in axial bolt force and the strength of combination joints. It is found that the joint strength changes as the bolt pitch circle diameter, the bonding position and the area, the initial clamping force and the adhesive material properties change. Furthermore, it is seen that the sealing performance of such combination joints in which the interfaces are bonded partially is improved over that of pipe flange connection with metallic gaskets.


Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Riichi Morimoto ◽  
Takashi Kobayashi

In designing of pipe flange connections with gaskets, it is important to examine the mechanical characteristics of the connections subjected to external bending moments due to earthquake such as the changes in hub stress, axial bolt forces and the contact gasket stress distribution which governs the sealing performance. One of the authors developed the PTFE blended gaskets and the authors examined the mechanical characteristics of the connections with the PTFE blended gaskets under internal pressure. However, no research was done to examine the mechanical characteristics of the connections with the newly developed PTFE blended gasket subjected to external bending moment due to earthquake. The objectives of the present study are to examine the mechanical characteristics of the connection with PTFE blended gasket subjected to external bending moment and internal pressure and to discuss the difference in the load order to the connections between the internal pressure and the external bending moments. The changes in the hub stress, the axial bolt force and the contact gasket stress distribution of the connection are analyzed using FEM. Using the obtained the gasket stress distribution and the fundamental data between the gasket stress and the leak rate for a smaller test gasket, the leak rate of the connection with the gasket is predicted under external bending moment and internal pressure. In the FEM calculations, the effects of the nominal diameter of pipe flanges on the mechanical characteristics are shown. In the experiments, ASME class 300 4 inch flange connection with 2m pipes at both sides is used and the test gasket is chosen as No.GF300 made by Nippon Valqua Industries, ltd. Four point bending moment is applied to the connection. The FEM results of the hub stress and the axial bolt forces are in a fairly good agreement with the experimental results. In addition, the FEM results of the leak rate are fairly coincided with the measured results.


Author(s):  
Yoshio Takagi ◽  
Hiroyasu Torii ◽  
Toshiyuki Sawa ◽  
Yuya Omiya

Since an external bending moment affects the sealing performance of pipe flange connection, it is important to investigate this effect. This paper analyzed the contact gasket stress distribution of pipe flange connections and evaluates the effect of external bending moment on the sealing performance from the viewpoint of changes in contact gasket stress. The study includes the FE analyses and the experimental leakage tests. The FE analyses suggested the large decrease of contact gasket stress at tension side and small increase at compression side. The difference in change in contact gasket stress was caused by the non-linear hysteresis characteristics of stress-displacement curve of gasket. The FE analyses also suggested that the loading order, internal pressure and external bending moment, also affected the sealing performance due to the non-linear deformation characteristic of the gasket. The sealing performance when the external bending moment applied prior to the internal pressure was degraded more than when the internal pressure was applied prior to the external bending moment. The experimental leakage tests using helium (He) gas were analyzed by the finite element method and discussed. This paper also evaluated the stress distribution in the pipe flange under external bending moment. The results suggested that the hub stress dominated the flange structure and the most important factor in designing the flange.


2000 ◽  
Author(s):  
Toshiyuki Sawa ◽  
Tsuneshi Morohoshi ◽  
Akihiro Shimizu

Abstract In designing bolted joints, it is important to know the contact stress distribution which governs the clamping effect or the sealing performance and to estimate the load factor (the ratio of an increment in axial bolt force to an external load) from bolt design standpoint. The clamping force by bolts and the external bending moment are axi-asymmetrical loads and not many investigations have seen reported which treat axi-asymmetrical. In this paper, the clamping effect, and the load factor for the case of solid round bars with circular flanges, subjected to external bending moments, are analyzed as an axi-asymmetrical problem using the three-dimensional theory of elasticity. Experiments were carried out concerning the contact stress distribution, and the load factor for the external bending moment (a relationship between an increment in axial bolt force, and external bending moment). The analytical results were in fairly good agreement with the experimental ones.


Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Xing Zheng

The sealing performance prediction of bolted pipe flange connections with gaskets is important factor. However, it is known that the sealing performance of the larger nominal diameter connection is worse than that with smaller nominal diameter connection due to the flange rotation. Furthermore, recently PTFE blended gaskets were developed newly and the excellent sealing performance in the bolted pipe flange connection with smaller nominal diameter is found. So, it is necessary to examine the sealing performance and the mechanical characteristics of pipe flange connections with larger nominal diameter under internal pressure. The objectives of present study are to examine the mechanical characteristics of the pipe flange connection with PTFE blended gasket under internal pressure such as the load factor, the contact gasket stress distribution and the sealing performance using FEM and experiments. Using the obtained contact gasket stress distribution and the fundamental leak rate for smaller PTFE gasket, the leak rate of the connection is predicted under internal pressure. In the FEM calculation, the effects of the nominal diameter of pip flange connections on the mechanical characteristics are shown. In the experiments, ASME class 300 24” pipe flange connections is used and the gasket is chosen as No.GF300 in PTFE blended gaskets. The FEM results of the axial bolt forces are in a fairly good agreement with the experimental results. In addition, the leak rate obtained from the FEM calculations are fairly coincided with the measured results. The mechanical characteristics of pipe flange connection with PTFE blended gasket are compared with those with spiral wound gasket.


Author(s):  
Toshiyuki Sawa ◽  
Yoshio Takagi ◽  
Hiroyasu Torii

Since a lot of pipe flange connections are exposed to elevated temperature during operation, it is important to evaluate the sealing performance of the connections under operational temperature. In this study, the sealing performance of pipe flange connection was experimentally evaluated by measuring the amount of gas leakage at room temperature (RT), 100 °C and 200 °C in addition to internal pressure. Non-asbestos graphite gaskets were used in the experiment. The nominal size of the pipe flange used during the experimental study was 3 inch. The eight bolts and nuts were tightened according to ASME PCC-1 and the Japanese method (HPIS). During assembly, the axial bolt force was individually measured with strain gauges attached to each bolt. The scatter in the axial bolt force during the assembling process was examined and compared between the ASME and the HPIS. In addition, the gasket contact stress distribution of each assembly process was calculated by finite element method under elevated temperature and internal pressure. In the FE study, experimentally measured physical properties such as elastic modulus and thermal expansion were used. ηhe amount of leakage was estimated from the contact gasket stress distribution obtained by FE analysis. The estimated axial bolt forces were compared with those of experimental ones.


Author(s):  
Yoshio Takagi ◽  
Toshiyuki Sawa ◽  
Hiroyasu Torii ◽  
Yuya Omiya

It has been well known that a scatter in axial bolt forces in pipe flange connections tightened by the torque control method is substantial. In practice, pipe flange connections with the large nominal diameter tightened by the torque control method have been used in chemical industry, and so on. In our study, the characteristics of the connections with smaller nominal diameter (less than 8″) have been shown. So, in an optimum design of pipe flange connections with gaskets, it is necessary to understand the characteristics of the pipe flange connections with large nominal diameter under internal pressure and the contact gasket stress distributions due to the scatter in axial bolt forces in the connections tightened by the torque control method. In this paper, the experimental and FE analyses were done to evaluate the effect of scatter in axial bolt force on the gasket stress distribution and the sealing performance of pipe flange connections with 20″ nominal diameter. Two types of torque controlled assembling procedures, that is, ASME PCC-1 and JIS B 2251 procedures, are evaluated as an assembling procedures and an effect of scatter in the axial bolt forces obtained from the above methods is examined. Then, the effect of scatter in the axial bolt forces on the sealing performance of the connection is evaluated. The contact stress distribution in the larger pipe flange connection with 20″ nominal diameter under internal pressure is analyzed using FEM by taking into account a non-linearity and a hysteresis. The measured scatter in the axial bolt forces is applied in the FEM calculations.


Author(s):  
Yuya Omiya ◽  
Toshiyuki Sawa

In designing bolted flange connections under heat conduction conditions and internal pressure, the characteristics such as the contact gasket stress are important factors from reliable design standpoint. They must be examined analytically and experimentally. In this paper, in order to examine the above characteristics, thermal stress of bolted flange connections subjected to internal pressure and heat conduction conditions is analyzed using the theory of elasticity and FEM calculations. The effects of gasket properties and nominal diameter of flanges on the above characteristics are examined numerically. In the experiments, the amount of helium gas leakage in the connection was measured. Using the obtained gasket stress at elevated temperature, a method for estimating the amount of gas leakage is proposed. The analytical results of the above characteristics are compared with the experimental results, with reasonable agreements. The results reveal that the sealing performance increases due to the gasket properties as the temperature increases in this study.


2000 ◽  
Author(s):  
Toshiyuki Sawa ◽  
Masahiro Yoneno ◽  
Yasuo Matsunami

Abstract Shrink fitted joints have been widely used in mechanical structures. Recently, joints combining shrink fitted with an anaerobic adhesive have been developed in order to increase the joint strength. This joint is named the bonded shrink fitted joint. In this paper, push-off tests were carried out to measure the joint strength of bonded shrink fitted joints. In addition, the strength of the shrink fitted joints without the anaerobic adhesive was also measured. In the experiments, the effect of shrinking allowance, the outer diameter of the shafts, and the engagement length on the joint strength are examined. In addition, the size effect of joints is also examined in the experiments taking into account the surface roughness, and the roundness. The stress distribution of the joints subjected to a push-off load is analyzed using axisymmetrical theory of elasticity as a four-body contact problem. Using the stress distribution, the joint strength is estimated. The experimental results are in a fairly good agreement with the numerical results. It is found that the push-off strength of the bonded shrink fitted joints is greater than that of the shrink fitted joint.


Author(s):  
Ryou Kurosawa ◽  
Toshiyuki Sawa ◽  
Satoshi Nagata ◽  
Yasuaki Tatsumi

Bolted joints with gaskets such as non-circular flange connections have been widely used in mechanical structures, nuclear and chemical industry, and so on. They are usually used under internal pressure as well as other loadings such as thermal, impact loadings and so on. In designing the non-circular flange connections with gaskets, it is important to evaluate the sealing performance of the non-circular flange connections with gaskets subjected to internal pressure. An important issue is how to evaluate the sealing performance in the box-shaped bolted flange connections by using the contact gasket stress distributions at the interfaces, how to reduce the weight and how to determine the initial clamping bolt force (preload) by using the new gasket constants. In this paper, the stresses of box-shaped flange connection with gaskets subjected to an internal pressure are analyzed using the finite element method (FEM), taking account a hysteresis in the stress-strain curves of the gasket. The reduced contact gasket stress distributions are analyzed when the internal pressure is applied to the connection. The leakage tests were conducted using an actual box-shaped flange connection with a gasket. Using the reduced contact gasket stress distributions at the interfaces under an internal pressure (Helium gas was used) and the amount of the leakage measured in the experiment, the sealing performances are evaluated experimentally and theoretically by changing the initial clamping force and cover material in the connections. In addition, the sealing performance of the connection with raised face is also examined. Discussion is made on the effects of the initial clamping force, cover material and the types of facing on the sealing performance in the above connections.


Sign in / Sign up

Export Citation Format

Share Document