Aortic Pressure Estimation With Electro-Mechanical Circulatory Assist Devices

1993 ◽  
Vol 115 (2) ◽  
pp. 187-194 ◽  
Author(s):  
J. F. Gardner ◽  
M. Ignatoski ◽  
U. Tasch ◽  
A. J. Snyder ◽  
D. B. Geselowitz

An adaptive technique for the estimation of the time history of aortic pressure (from applied voltage and position feedback) has been designed, implemented, and bench tested using the Penn State Electric Ventricular Assist Device (EVAD). This method, known in the field of automatic control as a dynamic observer, utilizes gains which were determined using experimental data collected while the EVAD was running on a mock circulatory system. An adaptive scheme provides the observer with a method of changing its initial conditions on a stroke-by-stroke basis which improves observer performance. In both determining the feedback gains and developing the adaptation scheme, a range of beat rates and pressure loads was taken into account to yield satisfactory observer performance over a range of operating conditions. The observer was implemented, its performance was verified in vitro and results are reported. In the six experimental operating conditions, the beat rate ranged from 56-104 beats per minute (bpm) and the span of the mean systolic aortic pressure was 10.7-18.7 kPa (80–140 mmHg). For these cases, the mean deviation between the actual and estimated aortic pressure during the latter two-thirds of systole was 0.41 kPa (3.1 mmHg).

1980 ◽  
Vol 85 (1) ◽  
pp. 111-128 ◽  
Author(s):  
M. J. Wells

The circulatory system of cephalopods is based on a trio of hearts, with two pairs of associated ganglia linked to the CNS by a pair of visceral nerves. The beat of the hearts was recorded from free-moving octopuses before and after surgical removal or disconnexion of elements of the nervous system. Severing the visceral nerves does not stop the hearts, which continue to beat in a powerful well co-ordinated manner in isolation from the CNS. The nerves seem to be concerned in raising the cardiac output in exercise, and with stopping the hearts when mantle movements cease, but they are not necessary for the initiation of maintenance of the normal rhythm. Removal of the fusiform ganglia severs all nervous connexions between the ywo gill hearts, and deprives the systemic heart of its nerve supply. The trio of hearts continues to beat as strongly as before. Removal or disconnexion of a cardiac ganglion disrupts the beat of the corresponding gill heart which now tends to contract in an ill-coordinated and rather feeble manner, though at much the same frequency as before; with both cardiacs gone the systemic heart, which contracts only when it is filled, tends to drop in frequency and the mean aortic pressure falls. The system remains rhythmic, however, and the beat may recover, to the point where aortic pressures and frequencies approach those found in intact animals at rest; even octopuses with both fusiform and both cardiac ganglia removed can survive for many hours. From the performance of the isolated branchial heart, the existence of a pulsating vesicle in each cardiac ganglion, the effects of cardiac ganglion removal and the remarkable steadiness of heartbeat frequency shown by intact animals under a variety of conditions, it is argued that the heartbeat rhythm is normally controlled by pacemakers in the branchial heart/ cardiac ganglion complexes, and perhaps, in intact animals, from within the cardiac ganglia themselves. The picture of the control of the heartbeat that emerges from the study of free moving essentially intact animals is quite different from that arising from in vitro and acute preparation studies. It suggests that the conventional wisdom about the control of the heartbeat in cephalopods (and perhaps by implication, in other molluscs) may need to be considerably revised.


2020 ◽  
Vol 30 (3) ◽  
pp. 408-416 ◽  
Author(s):  
Te-I Chang ◽  
Kang-Hong Hsu ◽  
Chi-Wen Luo ◽  
Jen-Hong Yen ◽  
Po-Chien Lu ◽  
...  

Abstract OBJECTIVES Handmade trileaflet expanded polytetrafluoroethylene valved conduit developed using the flip-over method has been tailored for pulmonary valve reconstruction with satisfactory outcomes. We investigated the in vitro performance of the valve design in a mock circulatory system with various conduit sizes. In our study, the design was transformed into a transcatheter stent graft system which could fit in original valved conduits in a valve-in-valve fashion. METHODS Five different sizes of valved polytetrafluoroethylene vascular grafts (16, 18, 20, 22 and 24 mm) were mounted onto a mock circulatory system with a prism window for direct leaflets motion observation. Transvalvular pressure gradients were recorded using pressure transducers. Mean and instant flows were determined via a rotameter and a flowmeter. Similar flip-over trileaflet valve design was then carried out in 3 available stent graft sizes (23, 26 and 28.5 mm, Gore aortic extender), which were deployed inside the valved conduits. RESULTS Peak pressure gradient across 5 different sized graft valves, in their appropriate flow setting (2.0, 2.5 and 5.0 l/min), ranged from 4.7 to 13.2 mmHg. No significant valve regurgitation was noted (regurgitant fraction: 1.6–4.9%) in all valve sizes and combinations. Three sizes of the trileaflet-valved stent grafts were implanted in the 4 sizes of valved conduits except for the 16-mm conduit. Peak pressure gradient increase after valved-stent graft-in-valved-conduit setting was <10 mmHg in all 4 conduits. CONCLUSIONS The study showed excellent in vitro performance of trileaflet polytetrafluoroethylene valved conduits. Its valved stent graft transformation provided data which may serve as a reference for transcatheter valve-in-valve research in the future.


1977 ◽  
Vol 99 (4) ◽  
pp. 184-188 ◽  
Author(s):  
K. M. High ◽  
J. A. Brighton ◽  
A. D. Brickman ◽  
W. S. Pierce

A mathematical model is developed for calculating the pressures and flows in an artificial heart, its pneumatic drive unit, and a mock circulatory system. The system is divided into convenient subsystems to facilitate the analysis, and each subsystem is then analyzed separately. The set of independent equations developed is solved on a computer and corresponding experimental tests are made on the actual system. A comparison of the experimental and computer results shows good agreement for the mean flow rate through the pump and also for several instantaneous pressures and flow rates in the system.


2015 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael Tree ◽  
Jason White ◽  
Prem Midha ◽  
Samantha Kiblinger ◽  
Ajit Yoganathan

The CardioMEMS heart failure (HF) system was tested for cardiac output (CO) measurement accuracy using an in vitro mock circulatory system. A software algorithm calculates CO based on analysis of the pressure waveform as measured from the pulmonary artery, where the CardioMEMS system resides. Calculated CO was compared to that from reference flow probe in the circulatory system model. CO measurements were compared over a clinically relevant range of stroke volumes and heart rates with normal, pulmonary hypertension (PH), decompensated left heart failure (DLHF), and combined DHLF + PH hemodynamic conditions. The CardioMEMS CO exhibited minimal fixed and proportional bias.


1977 ◽  
Vol 99 (1) ◽  
pp. 14-19 ◽  
Author(s):  
D. B. Geselowitz ◽  
G. E. Miller ◽  
W. M. Phillips

Inlet and outlet pressures and flows were obtained over a wide range of operating conditions for a pneumatically driven sac-type artificial ventricle connected to a mechanical mock circulatory system. The load presented to the ventricle by the mock circulatory system was found to be characterized by a linear resistance and capacitance. A dynamic model for the ventricle which accounted for instantaneous pressures and flows was developed. The outlet port is characterized by an inertance and square law resistance; the inlet port is characterized by a nonlinear resistance dependent on the type of valve. The input to the model is the time varying sac pressure. The model predicts the fill-limited and ejection-limited modes of the artificial ventricle.


Author(s):  
Tiffany A. Camp ◽  
Stephanie Hequembourg ◽  
Richard S. Figliola ◽  
Tim McQuinn

The operating pressures in the right heart are significantly lower than those of the left heart and with marked differences in the circulation impedances. The pulmonary circulation shows a tolerance for mild regurgitation and pressure gradient [1]. Pulmonary regurgitation fractions on the order of 20% and transvalvular pressure gradients of less than 25mm Hg are considered mild [4]. Given this tolerance, we examine the concept of using a motionless valve to regulate flow in the pulmonary position. In a previous study, the use of fluid diodes was shown to be a promising concept for use as a pulmonary valve [2]. In this study, we test two different diode designs. For each diode valve, flow performance was documented as a function of pulmonary vascular resistance (PVR) and compliance. Tests were done using a pulmonary mock circulatory system [3] over the normal adult range of PVR and compliance settings.


Author(s):  
Osamu MARUYAMA ◽  
Daisuke SUGIYAMA ◽  
Yosuke TOMARI ◽  
Ryo KOSAKA ◽  
Masahiro NISHIDA ◽  
...  

2021 ◽  
Vol 9 (9) ◽  
pp. 99
Author(s):  
Amit Mistry ◽  
Cemal Ucer ◽  
John D. Thompson ◽  
Rabia Sannam Khan ◽  
Emina Karahmet ◽  
...  

An increase in the number of implants placed has led to a corresponding increase in the number of complications reported. The complications can vary from restorative complications due to poor placement to damage to collateral structures such as nerves and adjacent teeth. A large majority of these complications can be avoided if the implant has been placed accurately in the optimal position. Therefore, the aim of this in vitro pilot study was to investigate the effect of freehand (FH) and fully guided (FG) surgery on the accuracy of implants placed in close proximity to vital structures such as the inferior alveolar nerve (IAN). Cone-beam computed tomography (CBCT) and intraoral scans of six patients who have had previous dental implants in the posterior mandible were used in this study. The ideal implant position was planned. FG surgical guides were manufactured for each case. In this study, the three-dimensional 3D printed resin models of each of the cases were produced and the implants placed using FG and FH methods on the respective models. The outcome variables of the study, angular deviations were calculated and the distance to the IAN was measured. The mean deviations for the planned position observed were 1.10 mm coronally, 1.88 mm apically with up to 6.3 degrees’ angular deviation for FH surgery. For FG surgical technique the mean deviation was found to be at 0.35 mm coronally, 0.43 mm apically with 0.78 degrees angularly respectively. The maximum deviation from the planned position for the apex of the implant to the IAN was 2.55 mm using FH and 0.63 mm FG. This bench study, within its limitations, demonstrated surgically acceptable accuracy for both FH and FG techniques that would allow safe placement of implants to vital structures such as the IAN when a safety zone of 3 mm is allowed. Nevertheless, a better margin of error was observed for FG surgery with respect to the angular deviation and controlling the distance of the implant to the IAN using R2 Gate® system.


Sign in / Sign up

Export Citation Format

Share Document