Formulation of Equations of Motion for a Chain of Flexible Links Using Hamilton’s Principle

1994 ◽  
Vol 116 (1) ◽  
pp. 81-88 ◽  
Author(s):  
M. Benati ◽  
A. Morro

The dynamic equations of a chain of flexible links are determined by means of Hamilton’s principle. First a continuous model is adopted and the boundary conditions are determined, along with the partial differential equations of motion. Then a model with a finite number of degrees of freedom is set up. The configuration of each link is described through the line which joins the end points and the relative deformation is described in terms of appropriate trial functions. The boundary conditions are incorporated into a set of basic trial functions. The time-dependent coefficients of the remaining shape functions play the role of Lagrangian coordinates. The dynamic equations are then derived and the procedure is contrasted with other methods for reduction of a system of links to a system with a finite number of degrees of freedom.

1988 ◽  
Vol 110 (4) ◽  
pp. 410-415 ◽  
Author(s):  
M. Benati ◽  
A. Morro

A Lagrangian approach is developed for the dynamics of a chain with flexible links. Each link is modeled as a system with a finite number of degrees of freedom, one of them describing the rotation, the other ones the flexibility. While the approach is developed for chains with any numbers of links, the dynamic equations are written explicitly for a chain with two links and a payload.


1992 ◽  
Vol 59 (2S) ◽  
pp. S224-S229 ◽  
Author(s):  
Warren N. White ◽  
Srinivasan Venkatasubramanian ◽  
P. Michael Lynch ◽  
Chi-Lung D. Huang

Equations of motion of a thin, stranded elastic cable with an eccentric, attached mass and subject to aerodynamic loading are derived using Hamilton’s principle. Coupling between the translational and rotational degrees of freedom owing to inertia, elasticity, and stranded geometry are considered. By invoking simplifying assumptions, the equations of motion are reduced to those obtained previously by other researchers.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Kalyan K. Mankala ◽  
Sunil K. Agrawal

The objective of this paper is to derive the dynamic equations of a tether as it is deployed or retrieved by a winch on a satellite orbiting around Earth using Newton’s laws and Hamilton’s principle and show the equivalence of the two methods. The main feature of this continuous system is the presence of a variable length domain with discontinuities. Discontinuity is present at the boundary of deployment because of the assumption that the stowed part of the cable is unstretched and the deployed part is not. Developing equations for this variable domain system with discontinuities, specially using Hamilton’s principle, is a nontrivial task and we believe that it has not been adequately addressed in the literature.


Author(s):  
Soroosh Hassanpour ◽  
G. R. Heppler

This paper is devoted to the dynamic modeling of micropolar gyroelastic beams and explores some of the modeling and analysis issues related to them. The simplified micropolar beam torsion and bending theories are used to derive the governing dynamic equations of micropolar gyroelastic beams from Hamilton’s principle. Then these equations are solved numerically by utilizing the finite element method and are used to study the spectral and modal behaviour of micropolar gyroelastic beams.


Author(s):  
Shanzhong Duan ◽  
Kurt S. Anderson

Abstract The paper presents a new hybrid parallelizable low order algorithm for modeling the dynamic behavior of multi-rigid-body chain systems. The method is based on cutting certain system interbody joints so that largely independent multibody subchain systems are formed. These subchains interact with one another through associated unknown constraint forces f¯c at the cut joints. The increased parallelism is obtainable through cutting the joints and the explicit determination of associated constraint loads combined with a sequential O(n) procedure. In other words, sequential O(n) procedures are performed to form and solve equations of motion within subchains and parallel strategies are used to form and solve constraint equations between subchains in parallel. The algorithm can easily accommodate the available number of processors while maintaining high efficiency. An O[(n+m)Np+m(1+γ)Np+mγlog2Np](0<γ<1) performance will be achieved with Np processors for a chain system with n degrees of freedom and m constraints due to cutting of interbody joints.


2005 ◽  
Vol 109 (1095) ◽  
pp. 233-246 ◽  
Author(s):  
S-Y. Oh ◽  
L. Librescu ◽  
O. Song

Abstract The modelling and vibration of composite thin-walled pre-twisted rotating blades of non-uniform cross-sections along their span, and featuring the extension-twist elastic coupling are addressed. To this end, Hamilton’s principle is used to derive the equations of motion and the associated boundary conditions. In addition to the pretwist and warping restraint, the exotic properties of advanced composite material are used, and the efficiency of implementing the tailoring technique toward the enhancement, without weight penalties, of the vibratory behaviour of rotating blades is illustrated. Comparisons between the predictions by both Wagner’s and Washizu’s approaches are presented, and pertinent conclusions regarding the implications of the various geometrical and physical characteristics of the blade are outlined.


Author(s):  
Kris Kozak ◽  
Imme Ebert-Uphoff ◽  
William Singhose

Abstract This article investigates the dynamic properties of robotic manipulators of parallel architecture. In particular, the dependency of the dynamic equations on the manipulator’s configuration within the workspace is analyzed. The proposed approach is to linearize the dynamic equations locally throughout the workspace and to plot the corresponding natural frequencies and damping ratios. While the results are only applicable for small velocities of the manipulator, they present a first step towards the classification of the nonlinear dynamics of parallel manipulators. The method is applied to a sample manipulator with two degrees-of-freedom. The corresponding numerical results demonstrate the extreme variation of its natural frequencies and damping ratios throughout the workspace.


1999 ◽  
Vol 66 (4) ◽  
pp. 986-996 ◽  
Author(s):  
S. K. Saha

Constrained dynamic equations of motion of serial multibody systems consisting of rigid bodies in a serial kinematic chain are derived in this paper. First, the Newton-Euler equations of motion of the decoupled rigid bodies of the system at hand are written. Then, with the aid of the decoupled natural orthogonal complement (DeNOC) matrices associated with the velocity constraints of the connecting bodies, the Euler-Lagrange independent equations of motion are derived. The De NOC is essentially the decoupled form of the natural orthogonal complement (NOC) matrix, introduced elsewhere. Whereas the use of the latter provides recursive order n—n being the degrees-of-freedom of the system at hand—inverse dynamics and order n3 forward dynamics algorithms, respectively, the former leads to recursive order n algorithms for both the cases. The order n algorithms are desirable not only for their computational efficiency but also for their numerical stability, particularly, in forward dynamics and simulation, where the system’s accelerations are solved from the dynamic equations of motion and subsequently integrated numerically. The algorithms are illustrated with a three-link three-degrees-of-freedom planar manipulator and a six-degrees-of-freedom Stanford arm.


1992 ◽  
Vol 9 (8) ◽  
pp. 1083-1094
Author(s):  
Zhongping Deng ◽  
Liping Wang

Sign in / Sign up

Export Citation Format

Share Document