Oxidation of Natural Gas, Natural Gas/Syngas Mixtures, and Effect of Burnt Gas Recirculation: Experimental and Detailed Kinetic Modeling

Author(s):  
T. Le Cong ◽  
P. Dagaut ◽  
G. Dayma

The oxidation of methane-based fuels was studied experimentally in a fused-silica jet-stirred reactor (JSR) operating at 1–10atm, over the temperature range of 900–1450K, from fuel-lean to fuel-rich conditions. Similar experiments were performed in the presence of carbon dioxide or syngas (CO∕H2). A previously proposed kinetic reaction mechanism updated for modeling the oxidation of hydrogen, CO, methane, methanol, formaldehyde, and natural gas over a wide range of conditions including JSR, flame, shock tube, and plug flow reactor was used. A detailed chemical kinetic modeling of the present experiments was performed yielding a good agreement between the modeling, the present data and literature burning velocities, and ignition data. Reaction path analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in the presence of variable amounts of CO2. The kinetic reaction scheme proposed helps understand the effect of the additives on the oxidation of methane.

Author(s):  
Tanh Le Cong ◽  
Philippe Dagaut

The oxidation of methane-based fuels was studied experimentally in a fused silica jet-stirred reactor (JSR) operating at 1–10 atm, over the temperature range 900-1400 K, from fuel-lean to fuel-rich conditions. Similar experiments were performed in presence of carbon dioxide or syngas (CO/H2). A previously proposed kinetic reaction mechanism updated for modeling the oxidation of hydrogen, CO, methane, methanol, formaldehyde, and natural gas over a wide range of conditions including JSR, flame, shock tube, and plug flow reactor was used. A detailed chemical kinetic modeling of the present experiments was performed yielding a good agreement between the data and the modeling. Literature burning velocities and ignition delays were also modeled. Reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in presence of variable amounts of CO2. The kinetic reaction scheme proposed helps determining the effect of the additives on the oxidation of methane.


Author(s):  
Anamol Pundle ◽  
David G. Nicol ◽  
Philip C. Malte ◽  
Joel D. Hiltner

This paper discusses chemical kinetic modeling used to analyze the formation of pollutant emissions in large-bore, lean-burn gas reciprocating engines. Pollutants considered are NOx, CO, HCHO, and UHC. A quasi-dimensional model, built as a chemical reactor network (CRN), is described. In this model, the flame front is treated as a perfectly stirred reactor (PSR) followed by a plug flow reactor (PFR), and reaction in the burnt gas is modeled assuming a batch reactor of constant-pressure and fixed-mass for each crank angle increment. The model treats full chemical kinetics. Engine heat loss is treated by incorporating the Woschni model into the CRN. The mass burn rate is selected so that the modeled cylinder pressure matches the experiment pressure trace. Originally, the model was developed for large, low speed, two-stoke, lean-burn engines. However, recently, the model has been formatted for the four-stroke, open-chamber, lean-burn engine. The focus of this paper is the application of the model to a four-stroke engine. This is a single-cylinder non-production variant of a heavy duty lean-burn engine of about 5 liters cylinder displacement Engine speed is 1500 RPM. Key findings of this work are the following. 1) Modeled NOx and CO are found to agree closely with emission measurements for this engine over a range of relative air-fuel ratios tested. 2) This modeling shows the importance of including N2O chemistry in the NOx calculation. For λ = 1.7, the model indicates that about 30% of the NOx emitted is formed by the N2O mechanism, with the balance from the Zeldovich mechanism. 3) The modeling shows that the CO and HCHO emissions arise from partial oxidation late in the expansion stroke as unburned charge remaining mixes into the burnt gas. 4) Model generated plots of HCHO versus CH4 emission for the four-stroke engine are in agreement with field data for large-bore, lean-burn, gas reciprocating engines. Also, recent engine tests show the correlation of UHC and CO emissions to crevice volume. These tests suggest that HCHO emissions also are affected by crevice flows through partial oxidation of UHC late in the expansion stroke.


Author(s):  
Marina Braun-Unkhoff ◽  
Jens Dembowski ◽  
Jürgen Herzler ◽  
Jürgen Karle ◽  
Clemens Naumann ◽  
...  

In response to the limited resources of fossil fuels as well as to their combustion contributing to global warming through CO2 emissions, it is currently discussed to which extent future energy demands can be satisfied by using biomass and biogenic by-products, e.g., by cofiring. However, new concepts and new unconventional fuels for electric power generation require a re-investigation of at least the gas turbine burner if not the gas turbine itself to ensure a safe operation and a maximum range in tolerating fuel variations and combustion conditions. Within this context, alcohols, in particular, ethanol, are of high interest as alternative fuel. Presently, the use of ethanol for power generation—in decentralized (microgas turbines) or centralized gas turbine units, neat, or cofired with gaseous fuels like natural gas (NG) and biogas—is discussed. Chemical kinetic modeling has become an important tool for interpreting and understanding the combustion phenomena observed, for example, focusing on heat release (burning velocities) and reactivity (ignition delay times). Furthermore, a chemical kinetic reaction model validated by relevant experiments performed within a large parameter range allows a more sophisticated computer assisted design of burners as well as of combustion chambers, when used within computational fluid dynamics (CFD) codes. Therefore, a detailed experimental and modeling study of ethanol cofiring to NG will be presented focusing on two major combustion properties within a relevant parameter range: (i) ignition delay times measured in a shock tube device, at ambient (p = 1 bar) and elevated (p = 4 bar) pressures, for lean (φ = 0.5) and stoichiometric fuel–air mixtures, and (ii) laminar flame speed data at several preheat temperatures, also for ambient and elevated pressure, gathered from literature. Chemical kinetic modeling will be used for an in-depth characterization of ignition delays and flame speeds at technical relevant conditions. An extensive database will be presented identifying the characteristic differences of the combustion properties of NG, ethanol, and ethanol cofired to NG.


Author(s):  
Fuqiang Liu ◽  
Yong Mu ◽  
Cunxi Liu ◽  
Jinhu Yang ◽  
Yanhui Mao ◽  
...  

The low NOX emission technology has become an important feature of advanced aviation engine. A wide range of applications attempt to take advantage of the fact that staged combustion operating under lean-premixed-prevaporized (LPP) conditions can significantly decrease pollution emissions and improve combustion efficiency. In this paper a scheme with fuel centrally staged and multi-point injection is proposed. The mixing of fuel and air is improved, and the flame temperature is typically low in combustion zone, minimizing the formation of nitrogen oxides (NOX), especially thermal NOX. In terms of the field distribution of equivalence ratio and temperature obtained from Computational Fluid Dynamics (CFD), a chemical reactor network (CRN), including several different ideal reactor, namely perfectly stirred reactor (PSR) and plug flow reactor (PFR), is constructed to simulate the combustion process. The influences of the pilot equivalence ratio and percentage of pilot/main fuel on NOX and carbon monoxide (CO) emissions were studied by Chemical CRN model. Then the NOX emission in the staged combustor was researched experimentally. The effects of the amount of pilot fuel and primary fuel on pollution emissions were obtained by using gas analyzer. Finally, the effects of pilot fuel proportion on NOX emission were discussed in detail by comparing predicts of CRN and experimental results.


Author(s):  
Sajjad Yousefian ◽  
Gilles Bourque ◽  
Rory F. D. Monaghan

Many sources of uncertainty exist when emissions are modeled for a gas turbine combustion system. They originate from uncertain inputs, boundary conditions, calibration, or lack of sufficient fidelity in a model. In this paper, a nonintrusive polynomial chaos expansion (NIPCE) method is coupled with a chemical reactor network (CRN) model using Python to quantify uncertainties of NOx emission in a premixed burner. The first objective of uncertainty quantification (UQ) in this study is development of a global sensitivity analysis method based on the NIPCE method to capture aleatory uncertainty on NOx emission due to variation of operating conditions. The second objective is uncertainty analysis (UA) of NOx emission due to uncertain Arrhenius parameters in a chemical kinetic mechanism to study epistemic uncertainty in emission modeling. A two-reactor CRN consisting of a perfectly stirred reactor (PSR) and a plug flow reactor (PFR) is constructed in this study using Cantera to model NOx emission in a benchmark premixed burner under gas turbine operating conditions. The results of uncertainty and sensitivity analysis (SA) using NIPCE based on point collocation method (PCM) are then compared with the results of advanced Monte Carlo simulation (MCS). A set of surrogate models is also developed based on the NIPCE approach and compared with the forward model in Cantera to predict NOx emissions. The results show the capability of NIPCE approach for UQ using a limited number of evaluations to develop a UQ-enabled emission prediction tool for gas turbine combustion systems.


Author(s):  
Tanh Le Cong ◽  
Philippe Dagaut

The dilution of fuels by exhausts gases (mainly CO, CO2 and H2O) affects the kinetics of combustion. This dilution is used in gas turbines and flameless combustor. It helps reducing pollutant emissions, particularly NOx. Therefore, it is useful to study the effect of such compounds on the kinetics of oxidation of fuels such as natural gas and hydrogen. The oxidation of hydrogen and that of methane were studied experimentally in a fused silica jet-stirred reactor (JSR) over the temperature range 800–1500 K, from fuel-lean to fuel-rich conditions. The experiments were repeated in presence of 10% in mole of water vapor. A detailed chemical kinetic modeling of the present experiments and of literature data (flame speed, ignition delays) was performed using a previously proposed kinetic reaction mechanism, showing good agreement between the data and this modeling. Sensitivity and reaction paths analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in presence of water vapor. The kinetic reaction scheme proposed helps understanding the inhibiting effect of water vapor on the oxidation of hydrogen and methane. The effect of water vapor on NOx formation under gas turbine conditions was also investigated numerically using the proposed kinetic scheme.


Author(s):  
Daniel B. Olsen ◽  
Ryan K. Palmer ◽  
Charles E. Mitchell

Formaldehyde emissions from stationary natural gas engines are regulated in the United States, as mandated by the 1990 Clean Air Act Amendments. This work aims to advance the understanding of formaldehyde formation in large bore (>36 cm) natural gas engines. Formaldehyde formation in a large bore natural gas engine is modeled utilizing computational fluid dynamics and chemical kinetics. The top land crevice volume is believed to play an important role in the formation mechanisms of engine-out formaldehyde. This work focuses specifically on the top land crevice volume in the Cooper-Bessemer LSVB large bore 4-stroke cycle natural gas engine. Chemical kinetic modeling predicts that the top land crevice volume is responsible for the formation of 22 ppm of engine-out formaldehyde. Based on a raw exhaust concentration of 80 ppm, this constitutes about 27% of engine-out formaldehyde. Simplifying assumptions made for the chemical kinetic modeling are validated using computational fluid dynamics. Computational fluid dynamic analysis provided confirmation of crevice volume mass discharge timing. It also provided detailed pressure, temperature and velocity profiles within the top land crevice volume at various crank angle degrees.


Sign in / Sign up

Export Citation Format

Share Document