Effect of Fuel Staged Proportion on NOX Emission Performance of Centrally Staged Combustor

Author(s):  
Fuqiang Liu ◽  
Yong Mu ◽  
Cunxi Liu ◽  
Jinhu Yang ◽  
Yanhui Mao ◽  
...  

The low NOX emission technology has become an important feature of advanced aviation engine. A wide range of applications attempt to take advantage of the fact that staged combustion operating under lean-premixed-prevaporized (LPP) conditions can significantly decrease pollution emissions and improve combustion efficiency. In this paper a scheme with fuel centrally staged and multi-point injection is proposed. The mixing of fuel and air is improved, and the flame temperature is typically low in combustion zone, minimizing the formation of nitrogen oxides (NOX), especially thermal NOX. In terms of the field distribution of equivalence ratio and temperature obtained from Computational Fluid Dynamics (CFD), a chemical reactor network (CRN), including several different ideal reactor, namely perfectly stirred reactor (PSR) and plug flow reactor (PFR), is constructed to simulate the combustion process. The influences of the pilot equivalence ratio and percentage of pilot/main fuel on NOX and carbon monoxide (CO) emissions were studied by Chemical CRN model. Then the NOX emission in the staged combustor was researched experimentally. The effects of the amount of pilot fuel and primary fuel on pollution emissions were obtained by using gas analyzer. Finally, the effects of pilot fuel proportion on NOX emission were discussed in detail by comparing predicts of CRN and experimental results.

Author(s):  
G. Arvind Rao ◽  
Yeshayahou Levy ◽  
Ephraim J. Gutmark

Flameless combustion (FC) is one of the most promising techniques of reducing harmful emissions from combustion systems. FC is a combustion phenomenon that takes place at low O2 concentration and high inlet reactant temperature. This unique combination results in a distributed combustion regime with a lower adiabatic flame temperature. The paper focuses on investigating the chemical kinetics of an prototype combustion chamber built at the university of Cincinnati with an aim of establishing flameless regime and demonstrating the applicability of FC to gas turbine engines. A Chemical reactor model (CRM) has been built for emulating the reactions within the combustor. The entire combustion chamber has been divided into appropriate number of Perfectly Stirred Reactors (PSRs) and Plug Flow Reactors (PFRs). The interconnections between these reactors and the residence times of these reactors are based on the PIV studies of the combustor flow field. The CRM model has then been used to predict the combustor emission profile for various equivalence ratios. The results obtained from CRM model show that the emission from the combustor are quite less at low equivalence ratios and have been found to be in reasonable agreement with experimental observations. The chemical kinetic analysis gives an insight on the role of vitiated combustion gases in suppressing the formation of pollutants within the combustion process.


Author(s):  
S. Brusca ◽  
R. Lanzafame ◽  
M. Messina

In order to carry out an accurate heat release analysis, it is necessary to solve a non linear set of chemical equilibrium equations to calculate concentrations of the species present in cylinder gases during the combustion process. So, the thermodynamics properties of the mixture can be evaluated. The present paper deals with the study of the thermodynamics of combustion using a genetic approach. A genetic algorithm was used to solve the set of non linear equations. The goal of this method is the possibility of solving the equations set in a wide range of pressure, temperature and equivalence ratio combinations, where more traditional methods are often found to fail.


2004 ◽  
Vol 126 (1) ◽  
pp. 69-74 ◽  
Author(s):  
A. G. Chen ◽  
Daniel J. Maloney ◽  
William H. Day

An experimental investigation was carried out at DOE NETL on the humid air combustion process using liquid fuel to determine the effects of humidity on pollutant emissions and flame stability. Tests were conducted at pressures of up to 100 psia (690 kPa), and a typical inlet air temperature of 860°F (733 K). The emissions and RMS pressures were documented for a relatively wide range of flame temperature from 2440-3090°F (1610–1970 K) with and without added humidity. The results show more than 90% reduction of NOx through 10% humidity addition to the compressed air compared with the dry case at the same flame temperature. The substantial reduction of NOx is due to a shift in the chemical mechanisms and cannot be explained by flame temperature reduction due to added moisture since the comparison was made for the same flame temperature.


Author(s):  
Anamol Pundle ◽  
David G. Nicol ◽  
Philip C. Malte ◽  
Joel D. Hiltner

This paper discusses chemical kinetic modeling used to analyze the formation of pollutant emissions in large-bore, lean-burn gas reciprocating engines. Pollutants considered are NOx, CO, HCHO, and UHC. A quasi-dimensional model, built as a chemical reactor network (CRN), is described. In this model, the flame front is treated as a perfectly stirred reactor (PSR) followed by a plug flow reactor (PFR), and reaction in the burnt gas is modeled assuming a batch reactor of constant-pressure and fixed-mass for each crank angle increment. The model treats full chemical kinetics. Engine heat loss is treated by incorporating the Woschni model into the CRN. The mass burn rate is selected so that the modeled cylinder pressure matches the experiment pressure trace. Originally, the model was developed for large, low speed, two-stoke, lean-burn engines. However, recently, the model has been formatted for the four-stroke, open-chamber, lean-burn engine. The focus of this paper is the application of the model to a four-stroke engine. This is a single-cylinder non-production variant of a heavy duty lean-burn engine of about 5 liters cylinder displacement Engine speed is 1500 RPM. Key findings of this work are the following. 1) Modeled NOx and CO are found to agree closely with emission measurements for this engine over a range of relative air-fuel ratios tested. 2) This modeling shows the importance of including N2O chemistry in the NOx calculation. For λ = 1.7, the model indicates that about 30% of the NOx emitted is formed by the N2O mechanism, with the balance from the Zeldovich mechanism. 3) The modeling shows that the CO and HCHO emissions arise from partial oxidation late in the expansion stroke as unburned charge remaining mixes into the burnt gas. 4) Model generated plots of HCHO versus CH4 emission for the four-stroke engine are in agreement with field data for large-bore, lean-burn, gas reciprocating engines. Also, recent engine tests show the correlation of UHC and CO emissions to crevice volume. These tests suggest that HCHO emissions also are affected by crevice flows through partial oxidation of UHC late in the expansion stroke.


Author(s):  
Martin Valk ◽  
Nicolas Vortmeyer ◽  
Günter Kappler

A catalytic combustor concept with short catalyst segments and a thermal reactor is investigated with regard to NOx production of this concept under high-temperature conditions. The maximum combustor exit temperature was more than 1800 K with catalyst temperatures below 1300 K. For combustion of iso-octane, NOx emissions of 4 ppm (dry, 15% O2) at a flame temperature of 1800 K were measured. No significant influence of catalyst length, reference velocity and overall residence time on NOx emissions was observed. Additionally, the test combustor was fuelled with commercial diesel and kerosene (Jet-A). In this case, NOx emissions were noticeable higher due to fuel-bound nitrogen. The emissions measured were for diesel, 12 ppm, and for kerosene, 7 ppm, (each dry, 15% O2), again at a flame temperature of 1800 K. To evaluate the conversion ratio of fuel-bound nitrogen to NOx iso-octane was doped with various amounts of ammonia and metyhlamine. The conversion rates were 70 to 90%, with a slight tendency to lower values (50%) for nitrogen mass fractions above 0.1%. Considering the NOx emission level of actual premix burners, the lower emission value of the presented catalytic combustor results from a perfect premixed plug-flow combustion system incorporating a catalyst herein and not from a specific advantage of the principle of catalytic combustion itself. Again similar to a premix-combustor are the NOx emission characteristics in the case of lean combustion of nitrogen bound fuels, which yield very high conversion rates.


Author(s):  
Sajjad Yousefian ◽  
Gilles Bourque ◽  
Rory F. D. Monaghan

Many sources of uncertainty exist when emissions are modeled for a gas turbine combustion system. They originate from uncertain inputs, boundary conditions, calibration, or lack of sufficient fidelity in a model. In this paper, a nonintrusive polynomial chaos expansion (NIPCE) method is coupled with a chemical reactor network (CRN) model using Python to quantify uncertainties of NOx emission in a premixed burner. The first objective of uncertainty quantification (UQ) in this study is development of a global sensitivity analysis method based on the NIPCE method to capture aleatory uncertainty on NOx emission due to variation of operating conditions. The second objective is uncertainty analysis (UA) of NOx emission due to uncertain Arrhenius parameters in a chemical kinetic mechanism to study epistemic uncertainty in emission modeling. A two-reactor CRN consisting of a perfectly stirred reactor (PSR) and a plug flow reactor (PFR) is constructed in this study using Cantera to model NOx emission in a benchmark premixed burner under gas turbine operating conditions. The results of uncertainty and sensitivity analysis (SA) using NIPCE based on point collocation method (PCM) are then compared with the results of advanced Monte Carlo simulation (MCS). A set of surrogate models is also developed based on the NIPCE approach and compared with the forward model in Cantera to predict NOx emissions. The results show the capability of NIPCE approach for UQ using a limited number of evaluations to develop a UQ-enabled emission prediction tool for gas turbine combustion systems.


1997 ◽  
Vol 119 (1) ◽  
pp. 102-107 ◽  
Author(s):  
R. C. Steele ◽  
A. C. Jarrett ◽  
P. C. Malte ◽  
J. H. Tonouchi ◽  
D. G. Nicol

The formation of NOx in lean-premixed, high-intensity combustion is examined as a function of several of the relevant variables. The variables are the combustion temperature and pressure, fuel type, combustion zone residence time, mixture inlet temperature, reactor surface-to-volume ratio, and inlet jet size. The effects of these variables are examined by using jet-stirred reactors and chemical reactor modeling. The atmospheric pressure experiments have been completed and are fully reported. The results cover the combustion temperature range (measured) of 1500 to 1850 K, and include the following four fuels: methane, ethylene, propane, and carbon monoxide/hydrogen mixtures. The reactor residence time is varied from 1.7 to 7.4 ms, with most of the work done at 3.5 ms. The mixture inlet temperature is taken as 300 and 600 K, and two inlet jet sizes are used. Elevated pressure experiments are reported for pressures up to 7.1 atm for methane combustion at 4.0 ms with a mixture inlet temperature of 300 K. Experimental results are compared to chemical reactor modeling. This is accomplished by using a detailed chemical kinetic mechanism in a chemical reactor model, consisting of a perfectly stirred reactor (PSR) followed by a plug flow reactor (PFR). The methane results are also compared to several laboratory-scale and industrial-scale burners operated at simulated gas turbine engine conditions.


Author(s):  
Alexander G. Chen ◽  
Daniel J. Maloney ◽  
William H. Day

An experimental investigation was carried out at DOE NETL on the humid air combustion process using liquid fuel to determine the effects of humidity on pollutant emissions and flame stability. Tests were conducted at pressures of up to 100 psia (690 kPa), and a typical inlet air temperature of 860 °F (733 K). The emissions and RMS pressures were documented for a relatively wide range of flame temperature from 2440–3090 °F (1610 − 1970 K) with and without added humidity. The results show more than 90 percent reduction of NOx through 10 percent humidity addition to the compressed air compared with the dry case at the same flame temperature. The substantial reduction of NOx is due to a shift in the chemical mechanisms and cannot be explained by flame temperature reduction due to added moisture since the comparison was made for the same flame temperature.


Author(s):  
T. Le Cong ◽  
P. Dagaut ◽  
G. Dayma

The oxidation of methane-based fuels was studied experimentally in a fused-silica jet-stirred reactor (JSR) operating at 1–10atm, over the temperature range of 900–1450K, from fuel-lean to fuel-rich conditions. Similar experiments were performed in the presence of carbon dioxide or syngas (CO∕H2). A previously proposed kinetic reaction mechanism updated for modeling the oxidation of hydrogen, CO, methane, methanol, formaldehyde, and natural gas over a wide range of conditions including JSR, flame, shock tube, and plug flow reactor was used. A detailed chemical kinetic modeling of the present experiments was performed yielding a good agreement between the modeling, the present data and literature burning velocities, and ignition data. Reaction path analyses were used to delineate the important reactions influencing the kinetic of oxidation of the fuels in the presence of variable amounts of CO2. The kinetic reaction scheme proposed helps understand the effect of the additives on the oxidation of methane.


Author(s):  
R. C. Steele ◽  
A. C. Jarrett ◽  
P. C. Malte ◽  
J. H. Tonouchi ◽  
D. G. Nicol

The formation of NOx in lean-premixed, high-intensity combustion is examined as a function of several of the relevant variables. The variables are the combustion temperature and pressure, fuel-type, combustion zone residence time, mixture inlet temperature, reactor surface-to-volume ratio, and inlet jet size. The effects of these variables are examined by using jet-stirred reactors and chemical reactor modeling. The atmospheric pressure experiments have been completed and are fully reported. The results cover the combustion temperature range (measured) of 1500 to 1850K, and include the following four fuels: methane, ethylene, propane, and carbon monoxide/hydrogen mixtures. The reactor residence time is varied from 1.7 to 7.4ms, with most of the work done at 3.5ms. The mixture inlet temperature is taken as 300 and 600K, and two inlet jet sizes are used. Elevated pressure experiments are reported for pressures up to 7.1atm for methane combustion at 4.0ms with a mixture inlet temperature of 300K. Experimental results are compared to chemical reactor modeling. This is accomplished by using a detailed chemical kinetic mechanism in a chemical reactor model, consisting of a perfectly stirred reactor (PSR) followed by a plug flow reactor (PFR). The methane results are also compared to several laboratory-scale and industrial-scale burners operated at simulated gas turbine engine conditions.


Sign in / Sign up

Export Citation Format

Share Document