Streak Characteristics and Behavior Near Wall and Interface in Open Channel Flows

1990 ◽  
Vol 112 (2) ◽  
pp. 164-170 ◽  
Author(s):  
M. Rashidi ◽  
S. Banerjee

Turbulent structures near the boundaries (solid wall and gas-liquid interface) have been studied in open channel flows. Experiments with no shear, countercurrent shear, and cocurrent shear at the gas-liquid interfaces were conducted. Results indicate that near the sheared interfaces, the mean nondimensional span wise streak-spacing, lambda+, appears to be essentially invariant with shear Reynolds number, exhibiting consistent values of lambda+ ≈ 100 at y1+ = 5, while increasing with distance from the interface. Observation of the streaks near the interface indicates that the process of streak merging is active even for y1+ < 5. Further studies show that the low-speed streaks frequently occur as regions between longitudinal vortices separated by Deltaz+≈ 50 near the boundaries. These vortices generally originate from the boundaries at an angle of about 20–25 deg (for y+ <20), then lift up or eject chaotically at an angle of about 40–50 deg (for y+ >20). Based on these observations, a conceptual mechanism of streak breakdown near the sheared boundaries has been provided.

1976 ◽  
Vol 77 (3) ◽  
pp. 531-560 ◽  
Author(s):  
Roscoe G. Jackson

The bursting process in turbulent boundary layers provides new insight on turbulence phenomena, mechanics of sedimentation, and genesis of bedforms in natural geophysical flows. Recent visualization experiments suggest that the turbulent boundary layer can be divided into an inner zone, whose essential characteristics scale with inner (wall) variables, and an outer zone, whose properties scale with the fluid-dynamic variables of the entire flow. The inner zone is distinguished by (i) a viscous sublayer displaying spanwise alternations of high-and low-speed streaks and (ii) episodic disruption by lift-ups of low-speed streaks. Oscillatory growth and breakup stages of the Stanford model of bursting characterize the turbulent structure of the outer zone. The burst cycle exists in turbulent boundary layers of all natural flows except perhaps (i) open-channel flows in the upper part of the upper flow regime and (ii) wind-generated surface waves.Fluid motions described as kolks and boils in incompressible open-channel flows correspond to the oscillatory growth stage andthe late oscillatory growthand breakup stages, respectively, of the Stanford model of bursting. Supporting evidence includes (i) close similarity of gross fluid motions, (ii) equivalent scaling of boils and bursts, and (iii) intensification of boils and bursts in adverse pressure gradients and over rough beds. McQuivey's (1973) turbulence measurements show that the Eulerian integral time scaleTEscales with the same outer variables asboilperiodicity and burst periodicity. It is hypothesized thatTEequals the mean duration of bursts at a point in the flow.Bedforms governed by the turbulent structure of the inner zone (microforms) cannot form if the sublayer is disrupted by bed roughness. The conditions for the existence of two common microforms and their spacings scale with the inner variables. Grain roughness increases the vertical intensity of the turbulence (by enhancing lift-ups) within the inner zone, thereby explaining textural differences between the coarse ripple and fine ripple bed stages of Moss (1972).Mesoforms respond to the fluid-dynamical regime in the outer zone and scale with the outer variables. The mean spacing of dunelike large-scale ripples in equilibrium open-channel flows is proportional to the boundary-layer thickness and equals the length scale formed by the product of the free-stream velocity and the boil period.Strong upward flow in a burst provides the vertical anisotropy in the turbulence which is needed to suspend sediment. Bursting promotes the entrain-ment of more and coarser sediment than tractive forces alone can accomplish.


1973 ◽  
Vol 26 (3) ◽  
pp. 327 ◽  
Author(s):  
MJ Manton

The asymptotic representation of the distribution of a passive scalar within a two-dimensional channel flow is derived. The distribution is shown to be Gaussian with a skewness and longitudinal variance determined primarily by the mean shear. The distributions corresponding to both laminar and turbulent open channel flows are discussed.


Sign in / Sign up

Export Citation Format

Share Document