Sedimentological and fluid-dynamic implications of the turbulent bursting phenomenon in geophysical flows

1976 ◽  
Vol 77 (3) ◽  
pp. 531-560 ◽  
Author(s):  
Roscoe G. Jackson

The bursting process in turbulent boundary layers provides new insight on turbulence phenomena, mechanics of sedimentation, and genesis of bedforms in natural geophysical flows. Recent visualization experiments suggest that the turbulent boundary layer can be divided into an inner zone, whose essential characteristics scale with inner (wall) variables, and an outer zone, whose properties scale with the fluid-dynamic variables of the entire flow. The inner zone is distinguished by (i) a viscous sublayer displaying spanwise alternations of high-and low-speed streaks and (ii) episodic disruption by lift-ups of low-speed streaks. Oscillatory growth and breakup stages of the Stanford model of bursting characterize the turbulent structure of the outer zone. The burst cycle exists in turbulent boundary layers of all natural flows except perhaps (i) open-channel flows in the upper part of the upper flow regime and (ii) wind-generated surface waves.Fluid motions described as kolks and boils in incompressible open-channel flows correspond to the oscillatory growth stage andthe late oscillatory growthand breakup stages, respectively, of the Stanford model of bursting. Supporting evidence includes (i) close similarity of gross fluid motions, (ii) equivalent scaling of boils and bursts, and (iii) intensification of boils and bursts in adverse pressure gradients and over rough beds. McQuivey's (1973) turbulence measurements show that the Eulerian integral time scaleTEscales with the same outer variables asboilperiodicity and burst periodicity. It is hypothesized thatTEequals the mean duration of bursts at a point in the flow.Bedforms governed by the turbulent structure of the inner zone (microforms) cannot form if the sublayer is disrupted by bed roughness. The conditions for the existence of two common microforms and their spacings scale with the inner variables. Grain roughness increases the vertical intensity of the turbulence (by enhancing lift-ups) within the inner zone, thereby explaining textural differences between the coarse ripple and fine ripple bed stages of Moss (1972).Mesoforms respond to the fluid-dynamical regime in the outer zone and scale with the outer variables. The mean spacing of dunelike large-scale ripples in equilibrium open-channel flows is proportional to the boundary-layer thickness and equals the length scale formed by the product of the free-stream velocity and the boil period.Strong upward flow in a burst provides the vertical anisotropy in the turbulence which is needed to suspend sediment. Bursting promotes the entrain-ment of more and coarser sediment than tractive forces alone can accomplish.

1990 ◽  
Vol 112 (2) ◽  
pp. 164-170 ◽  
Author(s):  
M. Rashidi ◽  
S. Banerjee

Turbulent structures near the boundaries (solid wall and gas-liquid interface) have been studied in open channel flows. Experiments with no shear, countercurrent shear, and cocurrent shear at the gas-liquid interfaces were conducted. Results indicate that near the sheared interfaces, the mean nondimensional span wise streak-spacing, lambda+, appears to be essentially invariant with shear Reynolds number, exhibiting consistent values of lambda+ ≈ 100 at y1+ = 5, while increasing with distance from the interface. Observation of the streaks near the interface indicates that the process of streak merging is active even for y1+ < 5. Further studies show that the low-speed streaks frequently occur as regions between longitudinal vortices separated by Deltaz+≈ 50 near the boundaries. These vortices generally originate from the boundaries at an angle of about 20–25 deg (for y+ <20), then lift up or eject chaotically at an angle of about 40–50 deg (for y+ >20). Based on these observations, a conceptual mechanism of streak breakdown near the sheared boundaries has been provided.


1973 ◽  
Vol 26 (3) ◽  
pp. 327 ◽  
Author(s):  
MJ Manton

The asymptotic representation of the distribution of a passive scalar within a two-dimensional channel flow is derived. The distribution is shown to be Gaussian with a skewness and longitudinal variance determined primarily by the mean shear. The distributions corresponding to both laminar and turbulent open channel flows are discussed.


1999 ◽  
Vol 121 (3) ◽  
pp. 684-689 ◽  
Author(s):  
Ram Balachandar ◽  
Shyam S. Ramachandran

The results of an experimental investigation of turbulent boundary layers in shallow open channel flows at low Reynolds numbers are presented. The study was aimed at extending the database toward lower values of Reynolds number. The data presented are primarily concerned with the longitudinal mean velocity, turbulent-velocity fluctuations, boundary layer shape parameter and skin friction coefficient for Reynolds numbers based on the momentum thickness (Reθ) ranging from 180 to 480. In this range, the results of the present investigation in shallow open channel flows indicate a lack of dependence of the von Karman constant κ on Reynolds number. The extent to which the mean velocity data overlaps with the log-law decreases with decreasing Reθ. The variation of the strength of the wake with Reθ is different from the trend proposed earlier by Coles.


2007 ◽  
Vol 574 ◽  
pp. 465-493 ◽  
Author(s):  
D. HURTHER ◽  
U. LEMMIN ◽  
E. A. TERRAY

Acoustic Doppler velocity profiler (ADVP) measurements of instantaneous three-dimensional velocity profiles over the entire turbulent boundary layer height, δ, of rough-bed open-channel flows at moderate Reynolds numbers show the presence of large scale coherent shear stress structures (called LC3S herein) in the zones of uniformly retarded streamwise momentum. LC3S events over streamwise distances of several boundary layer thicknesses dominate the mean shear dynamics. Polymodal histograms of short streamwise velocity samples confirm the subdivision of uniform streamwise momentum into three zones also observed by Adrian et al. (J. Fluid Mech., vol. 422, 2000, p. 1). The mean streamwise dimension of the zones varies between 1δ and 2.5δ. In the intermediate region (0.2<z/δ<0.75), the contribution of conditionally sampled u'w' events to the mean vertical turbulent kinetic energy (TKE) flux as a function of threshold level H is found to be generated by LC3S events above a critical threshold level Hmax for which the ascendant net momentum flux between LC3S of ejection and sweep types is maximal. The vertical profile of Hmax is nearly constant over the intermediate region, with a value of 5 independent of the flow conditions. Very good agreement is found for all flow conditions including the free-stream shear flows studied in Adrian et al. (2000). If normalized by the squared bed friction velocity, the ascendant net momentum flux containing 90% of the mean TKE flux is equal to 20% of the shear stress due to bed friction. In the intermediate region this value is nearly constant for all flow conditions investigated herein. It can be deduced that free-surface turbulence in open-channel flows originates from processes driven by LC3S, associated with the zonal organization of streamwise momentum. The good agreement with mean quadrant distribution results in the literature implies that LC3S identified in this study are common features in the outer region of shear flows.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Arlan Scortegagna Almeida ◽  
Vladimir Caramori Borges de Souza

ABSTRACT Hydrometric measurements undertaken in channels with high velocities are conditioned to the particularities of the flow, which is often characterized by instantaneous fluctuations and disturbances on the free surface. In such cases, the uncertainties associated with velocity fluctuations exceed the precision offered by the instruments that are employed in conventional techniques. A reasonable accuracy of the results is therefore sufficient to accomplish the objective of the measurements. The use of devices based on Pitot’s principle in fast open-channel flows could be an effective alternative to conventional velocity meters. This study aimed to develop a Pitot tube in its simplest configuration and evaluate its performance in a laboratory channel at velocities ranging from 0.2 to 2.0 m/s. The uncertainties in the static and total head readings were propagated to the output velocities, showing that the device built has the potential for measurements over 1.2 m/s, but it is not recommended for low velocities (<0.6 m/s). The results were compared to those taken using an Acoustic Doppler Velocimeter (ADV). The instantaneous velocity readings indicated uncertainties of the same order of magnitude in both instruments. The differences between the mean velocities measured by the Pitot tube and the ADV were restricted to an agreement range of 15%, which is expected to be gradually reduced with further increase in flow velocity. The results showed the similar performances of both devices regarding the higher velocity estimates. Therefore, velocity meters should be developed to employ Pitot devices as an alternative method in high-velocity open-channel flows.


2005 ◽  
Vol 127 (5) ◽  
pp. 858-864 ◽  
Author(s):  
Wusi Yue ◽  
Ching-Long Lin ◽  
Virendra C. Patel

Turbulent open-channel flow over a two-dimensional laboratory-scale dune is studied using large eddy simulation. Free surface motion is simulated using level set method. Two subgrid scale models, namely, dynamic Smagorinsky model and dynamic two-parameter model, are employed for assessing model effects on the free surface flow. The present numerical predictions of mean flow field and turbulence statistics are in good agreement with experimental data. The mean flow can be divided into two zones, an inner zone where turbulence strongly depends on the dune bed geometry and an outer layer free from the direct influence of the bed geometry. Streaky structures are observed in the wall layer after flow reattachment. Quadrant two events are found to prevail in near-wall and near-surface motions, indicating the predominance of turbulence ejections in open-channel flows. Large-scale coherent structures are produced behind the dune crest by a strong shear layer riding over the recirculation zone. These quasistreamwise tubelike vortical structures are transported downstream with the mean flow and most are destructed before arriving at the next crest. Free surface deformation is visualized, demonstrating complex patterns of upwelling and downdraft.


2009 ◽  
Vol 36 (10) ◽  
pp. 1643-1655 ◽  
Author(s):  
Ana Maria Ferreira da Silva ◽  
Habib Ahmari

The size of the largest horizontal coherent structures (HCSs) of turbulence in open-channel flows is investigated experimentally on the basis of three series of flow velocity measurements. These are further used to explore the dynamics and morphological consequences of HCSs. The flow velocity measurements were carried out in a 21 m long and 1 m wide channel, with a bed formed by sand with average grain size of 2 mm. The bed surface was flat. The turbulent and subcritical flow under investigation was uniform, with a flow depth of 4 cm. The bed slope of 0.0015 was such that, for the present flow depth, the bed shear stress acting on the bed was substantially below the threshold for initiation of motion, thus ensuring that the bed remained flat throughout the measurements. To the knowledge of the writers, this work is a first attempt to systematically investigate HCSs in open-channel flows. It should be viewed as an extension to the case of horizontal structures of work previously carried out by a number of authors on large-scale organized turbulence motion in open-channel flows, so far focusing exclusively on vertical coherent structures (VCSs). The horizontal burst length was found to be between five and seven times the flow width. A slight internal meandering of the flow caused by the superimposition of burst sequences on the mean flow was detectable. Both of these findings lend support to the longstanding belief expressed by many prominent researchers that the formation of large-scale river forms is directly related to the large-scale turbulence. In particular, the present measurements for the first time provide some direct evidence in support of hypotheses previously raised by Yalin and da Silva regarding the formation of alternate bars and meanders through the action of HCSs on the mean flow and the mobile bed and banks.


Sign in / Sign up

Export Citation Format

Share Document