Erratum: “Correlations for Laminar Mixed Convection Flows on Vertical, Inclined, and Horizontal Flat Plates” (Journal of Heat Transfer, 1986, 108, pp. 835–840)

1994 ◽  
Vol 116 (2) ◽  
pp. 324-324 ◽  
Author(s):  
T. S. Chen ◽  
B. F. Armaly ◽  
N. Ramachandran
2018 ◽  
Vol 389 ◽  
pp. 164-175
Author(s):  
Houssem Laidoudi ◽  
Bilal Blissag ◽  
Mohamed Bouzit

In this paper, the numerical simulations of laminar mixed convection heat transfer from row of three isothermal square cylinders placed in side-by-side arrangement are carried out to understand the behavior of fluid flow around those cylinders under gradual effect of thermal buoyancy and its effect on the evacuation of heat energy. The numerical results are presented and discussed for the range of these conditions: Re = 10 to 40, Ri = 0 to 2 at fixed value of Prandtl number of Pr = 1 and at fixed geometrical configuration. In order to analyze the effect of thermal buoyancy on fluid flow and heat transfer characteristics the main results are illustrated in terms of streamline and isotherm contours. The total drag coefficient as well as average Nusselt number of each cylinder are also computed to determine exactly the effect of buoyancy strength on hydrodynamic force and heat transfer evacuation of each cylinder.


2005 ◽  
Vol 128 (4) ◽  
pp. 368-373 ◽  
Author(s):  
S. Roy ◽  
D. Anilkumar

A general analysis has been developed to study flow and heat transfer characteristics of an unsteady laminar mixed convection on a continuously moving vertical slender cylinder with surface mass transfer, where the slender cylinder is inline with the flow. The unsteadiness is introduced by the time-dependent velocity of the slender cylinder as well as that of the free stream. The calculations of momentum and heat transfer on slender cylinders considered the transverse curvature effect, especially in applications such as wire and fiber drawing, where accurate predictions are required. The governing boundary layer equations along with the boundary conditions are first cast into a dimensionless form by a nonsimilar transformation, and the resulting system of nonlinear coupled partial differential equations is then solved by an implicit finite difference scheme in combination with the quasi-linearization technique. Numerical results are presented for the skin friction coefficient and Nusselt number. The effects of various parameters on the velocity and temperature profiles are also reported here.


2016 ◽  
Vol 21 (1) ◽  
pp. 169-186 ◽  
Author(s):  
N.C. Roy ◽  
Md. A. Hossain ◽  
S. Hussain

Abstract The unsteady laminar boundary layer characteristics of mixed convection flow past a vertical wedge have been investigated numerically. The free-stream velocity and surface temperature are assumed to be oscillating in the magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and the extended series solution for low frequency range and the asymptotic series expansion method for high frequency range. The results demonstrate the effects of the Richardson number, Ri, introduced to quantify the influence of mixed convection and the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction and heat transfer. In addition, the effects of these parameters are examined in terms of the transient skin friction and heat transfer.


Author(s):  
M. Moein Addini ◽  
S. A. Gandjalikhan Nassab

AbstractThis paper presents a numerical investigation for laminar mixed convection flow of a radiating gas in a lid-driven cavity with a rectangular-shaped obstacle attached on the bottom wall. The vertical walls of the square cavity are assumed to be adiabatic, while other walls of cavity and obstacle are kept at constant temperature. The fluid is treated as a gray, absorbing, emitting and scattering medium. The governing differential equations consisting the continuity, momentum and energy are solved numerically by the computational fluid dynamics techniques to obtain the velocity and temperature fields. Discretized forms of these equations are obtained by the finite volume method and solved using the SIMPLE algorithm. Since the gas is considered as a radiating medium, besides convection and conduction, radiative heat transfer also takes place in the gas flow. For computation of the radiative term in the gas energy equation, the radiative transfer equation is solved numerically by the discrete ordinate method. The streamline and isotherm plots and the distributions of convective, radiative and total Nusselt numbers along the bottom wall of cavity are presented. The effects of Richardson number, obstacle location, radiation–conduction parameter, optical thickness and albedo coefficient on the flow and temperature distributions are carried out. Comparison between the present numerical results with those obtained by other investigators in the cases of conduction–radiation and pure convection systems shows good consistencies.


2001 ◽  
Vol 123 (4) ◽  
pp. 810-814 ◽  
Author(s):  
Wei-Mon Yan ◽  
Pei-Yuan Tzeng

A numerical calculation has been carried out to investigate the mixed convection heat transfer in inclined rectangular ducts with wall transpiration. The vorticity-velocity method is employed to solve the governing equations. The present paper particularly addresses the effects of the independent parameters, namely, mixed convection parameter Δ, modified Rayleigh number Ra*, wall Reynolds number Rew and aspect ratio γ. The predicted results show that either wall injection or wall suction has a considerable impact on the flow structure and heat transfer performance. Additionally, it was found that for injection case Rew<0, the Nusselt number Nu is retarded with an increase in the wall Reynolds number Rew, but the trend is reverse for the suction flow Rew>0.


Sign in / Sign up

Export Citation Format

Share Document