An Application of Octant Analysis to Turbulent and Transitional Flow Data

1994 ◽  
Vol 116 (4) ◽  
pp. 752-758 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

A technique called “octant analysis” was used to examine the eddy structure of turbulent and transitional heated boundary layers on flat and curved surfaces. The intent was to identify important physical processes that play a role in boundary layer transition on flat and concave surfaces. Octant processsing involves the partitioning of flow signals into octants based on the instantaneous signs of the fluctuating temperature, t′, streamwise velocity, u′, and cross-stream velocity, v′. Each octant is associated with a particular eddy motion. For example, u′ <0, v′>0, t′>0 is associated with an ejection or “burst” of warm fluid away from a heated wall. Within each octant, the contribution to various quantities of interest (such as the turbulent shear stress, −u′v′, or the turbulent heat flux, v′t′) can be computed. By comparing and contrasting the relative contributions from each octant, the importance of particular types of motion can be determined. If the data within each octant are further segregated based on the magnitudes of the fluctuating components so that minor events are eliminated, the relative importance of particular types of motion to the events that are important can also be discussed. In fully developed, turbulent boundary layers along flat plates, trends previously reported in the literature were confirmed. A fundamental difference was observed in the octant distribution between the transitional and fully turbulent boundary layers, however, showing incomplete mixing and a lesser importance of small scales in the transitional boundary layer. Such observations were true on both flat and concave walls. The differences are attributed to incomplete development of the turbulent kinetic energy cascade in transitional flows. The findings have potential application to modeling, suggesting the utility of incorporating multiple length scales in transition models.

Author(s):  
Ralph J. Volino ◽  
Terrence W. Simon

A technique called “octant analysis” was used to examine the eddy structure of turbulent and transitional heated boundary layers on flat and curved surfaces. The intent was to identify important physical processes that play a role in boundary layer transition on flat and concave surfaces. Octant processing involves the partitioning of flow signals into octants based on the instantaneous signs of the fluctuating temperature, t′; streamwise velocity, u′; and cross-stream velocity, v′. Each octant is associated with a particular eddy motion. For example, u′<0, v′>0, t′>0 is associated with an ejection or “burst” of warm fluid away from a heated wall. Within each octant, the contribution to various quantities of interest (such as the turbulent shear stress, −u′v′, or the turbulent heat flux, v′t′) can be computed. By comparing and contrasting the relative contributions from each octant, the importance of particular types of motion can be determined. If the data within each octant is further segregated based on the magnitudes of the fluctuating components so that minor events are eliminated, the relative importance of particular types of motion to the events that are important can also be discussed. In fully-developed, turbulent boundary layers along flat plates, trends previously reported in the literature were confirmed. A fundamental difference was observed in the octant distribution between the transitional and fully-turbulent boundary layers, however, showing incomplete mixing and a lesser importance of small scales in the transitional boundary layer. Such observations were true on both flat and concave walls. The differences are attributed to incomplete development of the turbulent kinetic energy cascade in transitional flows. The findings have potential application to modelling, suggesting the utility of incorporating multiple length scales in transition models.


1974 ◽  
Vol 41 (3) ◽  
pp. 551-553
Author(s):  
E. J. Hopkins

For hypersonic Mach numbers up to about 8, the virtual origin for turbulent skin-friction calculations is shown to be close to the beginning of boundary-layer transition. A simple relationship between the beginning and end of boundary-layer transition is presented.


1997 ◽  
Vol 119 (3) ◽  
pp. 427-432 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = (ν/U∞2 dU∞/dx, as high as 9 × 10−6) acceleration are presented and discussed. Conditions for the experiments were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Turbulence statistics, including the turbulent shear stress, the turbulent heat flux, and the turbulent Prandtl number are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Turbulence quantities are strongly suppressed below values in unaccelerated turbulent boundary layers. Turbulent transport quantities rise with the intermittency, as the boundary layer proceeds through transition. Octant analysis shows a similar eddy structure in the present flow as was observed in transitional flows under low free-stream turbulence conditions. To the authors’ knowledge, this is the first detailed documentation of a high-free-stream-turbulence boundary layer flow in such a strong acceleration field.


Author(s):  
Michael P. Schultz ◽  
Ralph J. Volino

An experimental investigation has been carried out on a transitional boundary layer subject to high (initially 9%) free-stream turbulence, strong acceleration K=ν/Uw2dUw/dxas high as9×10-6, and strong concave curvature (boundary layer thickness between 2% and 5% of the wall radius of curvature). Mean and fluctuating velocity as well as turbulent shear stress are documented and compared to results from equivalent cases on a flat wall and a wall with milder concave curvature. The data show that curvature does have a significant effect, moving the transition location upstream, increasing turbulent transport, and causing skin friction to rise by as much as 40%. Conditional sampling results are presented which show that the curvature effect is present in both the turbulent and non-turbulent zones of the transitional flow.


1969 ◽  
Vol 91 (2) ◽  
pp. 229-234 ◽  
Author(s):  
B. E. Launder ◽  
F. C. Lockwood

Theoretical consideration indicates that, in an accelerated turbulent flow, the thermal boundary layer may penetrate significantly beyond the edge of the velocity boundary layer. This effect may contribute in part to the marked decrease in Stanton number which has been reported in accelerated turbulent boundary layers. This paper presents theoretical solutions to turbulent velocity and thermal boundary layers in flow between converging planes where the wall temperature varies as the free-stream velocity raised to a positive exponent. The solutions clearly illustrate that, as the wall-temperature variation is made less rapid, the thermal boundary layer penetrates progressively further beyond the velocity boundary layer, causing the Stanton number to decrease.


1978 ◽  
Vol 89 (2) ◽  
pp. 305-342 ◽  
Author(s):  
B. A. Kader ◽  
A. M. Yaglom

Dimensional analysis is applied to the velocity profile U(y) of turbulent boundary layers subjected to adverse pressure gradients. It is assumed that the boundary layer is in moving or local equilibrium in the sense that the free-stream velocity U∞ and kinematic pressure gradient α = ρ−1dP/dx vary only slowly with the co-ordinate x. This assumption implies a rather complicated general equation for the velocity gradient dU/dy which may be considerably simplified for several specific regions of the flow. A general family of velocity profiles is derived from the simplified equations supplemented by some experimental information. This family agrees well with almost all existing data on velocity profiles in adverse-pressure-gradient turbulent boundary layers. It may be used for the derivation of a skin-friction law which predicts satisfactorily the values of the wall shear stress at any non-negative value of the pressure gradient. The variation of the boundary-layer thickness with x is also predicted by dimensional considerations.


1969 ◽  
Vol 38 (4) ◽  
pp. 817-831 ◽  
Author(s):  
B. E. Launder ◽  
W. P. Jones

The study of sink flow turbulent boundary layers is of particular relevance to the problem of laminarization. The reason lies in the fact that the acceleration parameter which principally determines when a turbulent boundary layer will begin to revert towards laminar is, in these flows, constant from station to station. The paper presents theoretical solutions to this class of boundary layer by making use of the Prandtl mixing-length formula to relate the turbulent shear stress to the mean velocity gradient. Near the wall the Van Driest recommendation for mixing length is adopted and the Van Driest function, A+, is chosen such that the skin friction coefficient does not exceed a certain maximum value.The predicted solutions, which are in good agreement with available experimental data, display a plausible shift from the turbulent towards the laminar solution as the acceleration parameter is increased.


2003 ◽  
Vol 125 (1) ◽  
pp. 18-27 ◽  
Author(s):  
Michael P. Schultz ◽  
Ralph J. Volino

An experimental investigation has been carried out on a transitional boundary layer subject to high (initially 9%) freestream turbulence, strong acceleration (K=ν/Uw2dUw/dx as high as 9×10−6), and strong concave curvature (boundary layer thickness between 2% and 5% of the wall radius of curvature). Mean and fluctuating velocity as well as turbulent shear stress are documented and compared to results from equivalent cases on a flat wall and a wall with milder concave curvature. The data show that curvature does have a significant effect, moving the transition location upstream, increasing turbulent transport, and causing skin friction to rise by as much as 40%. Conditional sampling results are presented which show that the curvature effect is present in both the turbulent and nonturbulent zones of the transitional flow.


Author(s):  
Ken-ichi Funazaki ◽  
Takashi Kitazawa ◽  
Kazuyuki Koizumi ◽  
Tadashi Tanuma

The objective of this study is to investigate effects of favorable pressure gradient as well as free-stream turbulence upon wake-induced boundary layer transition on a flat plate. Likewise in the previous study by Funazaki (1996), a spoked-wheel type wake generator is employed in this study. Two identical flat plates with sharp edge are used as test model. One of them is for measurement of boundary layers over the test plate by use of a single hot-wire probe, and the other is provided with thin stainless-steel foils on the surface to measure wake-affected heat transfer along the surface. Free-stream turbulence intensities are controlled with several types of turbulence grids. Pressure gradients over the test surface are adjusted by changing an inclination angle of the plate located opposite to the test model. In Part I, transition models proposed by Mayle and Dullenkopf (1990b) and Funazaki (1996a, 1996b) are compared with the experimental data obtained in this study to examine how such a model succeeds or fails in predicting the wake-induced boundary layer transition under the influences of favorable pressure gradient with a low free-stream turbulence.


1968 ◽  
Vol 19 (1) ◽  
pp. 1-19 ◽  
Author(s):  
H. McDonald

SummaryRecently two authors, Nash and Goldberg, have suggested, intuitively, that the rate at which the shear stress distribution in an incompressible, two-dimensional, turbulent boundary layer would return to its equilibrium value is directly proportional to the extent of the departure from the equilibrium state. Examination of the behaviour of the integral properties of the boundary layer supports this hypothesis. In the present paper a relationship similar to the suggestion of Nash and Goldberg is derived from the local balance of the kinetic energy of the turbulence. Coupling this simple derived relationship to the boundary layer momentum and moment-of-momentum integral equations results in quite accurate predictions of the behaviour of non-equilibrium turbulent boundary layers in arbitrary adverse (given) pressure distributions.


Sign in / Sign up

Export Citation Format

Share Document