Evaporation Rate Model for a Natural Convection Glazed Collector/Regenerator

1990 ◽  
Vol 112 (1) ◽  
pp. 51-57 ◽  
Author(s):  
D. J. Nelson ◽  
B. D. Wood

In the present work, a numerical method has been applied to model the water evaporation rate of a glazed collector/regenerator component of an open-cycle absorption refrigeration system. This two-dimensional model calculates local heat and mass-transfer coefficients as part of the solution. The air flow in the glazed channel is driven by the combined buoyancy of both heat and mass transfer (water evaporation). Since the heat and mass-transfer coefficients each depend on both of the driving potentials determined by local conditions in the falling film, a solution of the conjugate problem is required. The resulting nonuniform air-film interface conditions cause the local heat and mass transfer to differ significantly from the uniform boundary condition case. The glazed collector/regenerator is much less sensitive to the ambient temperature and humidity than the unglazed collector. The addition of a glazing over the collector/regenerator provides a significant performance improvement and enhances solution regeneration in a windy humid climate. The glazed collector/regenerator water evaporation rate is higher relative to the unglazed case because the reduction in convective and radiative heat losses increases the absorbent temperature and vapor pressure sufficiently to overcome the concomitant reduction in the mass-transfer coefficient.

1965 ◽  
Vol 7 (2) ◽  
pp. 177-184 ◽  
Author(s):  
D. Chisholm ◽  
T. F. Provan ◽  
D. Mitchell

Numerical methods of evaluating heat- and mass-transfer coefficients and local heat fluxes in surface condensers are outlined using the correlations for the vapour-side coefficients of Berman and Fuks, Chilton and Colburn, and Akers, Davis and Crawford. The procedures are particularly appropriate where a digital computer is used in solving the equations.


Author(s):  
Ya-Ping Chen ◽  
Chen-Jie Shi ◽  
Ming-Heng Shi ◽  
Chen-Min Ling

Film-inversion is an effective way recently developed to enhance heat and mass transfer in absorbers. However, only one-side of round or rectangular tube i.e. half of the total heat transfer area is used to form film-inverting configuration in the published literature. The paper presents a double-side film-inverting scheme, which consists of two plate bundles and a set of comb shaped conjunction guiders between them for leading solution film from both-sides of each couple of the upper plate bundle to the opposite sides of the bottom ones. A two-scale crosswise corrugation plate bundle, which has vertical large corrugations and horizontal small ones, is suggested instead of the plane plate bundle. The horizontal small corrugation can make the film turbulent and film distribution uniform before and after inversion with surface tension effect, thus increasing the heat and mass transfer coefficients of the absorption process. A mathematic model for heat and mass transfer in absorption process with aqueous Li-Br solution falling film-inverting on two sequential vertical plane plates was established and solved numerically. The distributions of dimensionless velocity, temperature and concentration of liquid film profile before and after film-inverting were obtained. The influence of the number of inversion on heat and mass transfer characteristics was analyzed. The calculation results show that the heat and mass transfer coefficients of the once-film-inverting scheme have about 58% and 73% increment respectively over these of the none film-inverting scheme.


2015 ◽  
Vol 6 (8(78)) ◽  
pp. 50
Author(s):  
Артур Юрьевич Рачинский ◽  
Михаил Константинович Безродный ◽  
Николай Никифорович Голияд ◽  
Петр Алексеевич Барабаш

Sign in / Sign up

Export Citation Format

Share Document