The Stiffness Model of Leaf-Type Isosceles-Trapezoidal Flexural Pivots

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Pei Xu ◽  
Yu Jingjun ◽  
Zong Guanghua ◽  
Bi Shusheng

A leaf-type isosceles-trapezoidal flexural pivot can be of great practical use for designing compliant mechanisms. The analysis of load-deflection behavior for such a pivot is essential to the study of the mechanisms that are comprised of them. Based on the analysis of a single special loaded leaf segment, a pseudo-rigid-body four-bar model is proposed. The four-bar model is further simplified to a pin-joint model for some simple applications. The accuracy of both models is demonstrated by comparing results to those of nonlinear finite element analysis. At last, the two models are applied to analyze the cartwheel hinge as an example.

2016 ◽  
Vol 681 ◽  
pp. 100-116
Author(s):  
Georgios A. Drosopoulos ◽  
Nikolaos Kaminakis ◽  
Nikoletta Papadogianni ◽  
Georgios E. Stavroulakis

The design of novel mechanical microstructures having auxetic behaviour is proposed in this paper using techniques of topology optimization for compliant mechanisms. The resulting microstructure can be modified in order to cover additional needs, not included in the topology optimization formulation. Classical structural optimization, contact mechanics, homogenization and nonlinear finite element analysis are used for this step. Thus, the modified microstructure or composite is studied with numerical homogenization in order to verify that it still has the wished auxetic behaviour. Finally, nonlinear finite element analysis shows how the auxetic behaviour is influenced by unilateral contact between the constituent materials, large displacements and elastoplasticity.


Author(s):  
Xu Pei ◽  
Jingjun Yu ◽  
Guanghua Zong ◽  
Shusheng Bi

A Leaf-type Isosceles-trapezoidal Flexural (LITF) pivot can be of great practical use for designing compliant mechanisms. The analysis of load-deflection behavior for such a pivot is essential to the study on the mechanisms which are composed of the pivots. A pseudo-rigid-body model provides a simple and accurate method. Based on the analysis of a single special loaded leaf segment, a four-bar model is presented. The four-bar model is further simplified to a pin-joint model for the simpler applications. The accuracy of both models is demonstrated by comparing results to those of non-linear finite element analysis. At last, the two models are applied to analyze the cartwheel hinge as an example.


2021 ◽  
Vol 11 (6) ◽  
pp. 2479
Author(s):  
Joseph Reinisch ◽  
Erich Wehrle ◽  
Johannes Achleitner

Topology optimization is a powerful numerical tool in the synthesis of lightweight structures and compliant mechanisms. Compliant mechanisms present challenges for topology optimization, as they typically exhibit large displacements and rotations. Path-generation mechanisms are a class of mechanisms that are designed to follow an exact path. The characteristics of compliant mechanisms therefore exclude the validity of linear finite-element analysis to ensure the proper modeling of deformation and stresses. As stresses can exceed the limit when neglected, stress constraints are needed in the synthesis of compliant mechanisms. Both nonlinear finite-element analysis as well as the consideration of stress constraints significantly increase computational cost of topology optimization. Multiresolution topology optimization, which employs different levels of discretization for the finite-element analysis and the representation of the material distribution, allows an important reduction of computational effort. A multiresolution topology optimization methodology is proposed integrating stress constraints based on nonlinear finite-element analysis for path-generation mechanisms. Two objective formulations are used to motivate and validate this methodology: maximum-displacement mechanisms and path-generation mechanisms. The formulation of the stress constraints and their sensitivities within nonlinear finite-element analysis and multiresolution topology optimization are explained. We introduce two academic benchmark examples to demonstrate the results for each of the objective formulations. To show the practical, large-scale application of this method, results for the compliant mechanism structure of a droop-nose morphing wing concept are shown.


Sign in / Sign up

Export Citation Format

Share Document