A Simple and Efficient Numerical Method for Dynamic Interaction Analysis of a High-Speed Train and Railway Structure During an Earthquake

Author(s):  
M. Tanabe ◽  
N. Matsumoto ◽  
H. Wakui ◽  
M. Sogabe ◽  
H. Okuda ◽  
...  

In this paper, a simple and efficient numerical method to solve for the dynamic interaction of a high-speed train and railway structure during an earthquake is given. The motion of the train is modeled in multibody dynamics with nonlinear springs and dampers used to connect components. An efficient mechanical model for contact dynamics between the wheel and rail during an earthquake is presented. The railway structure is modeled with various finite elements. A nonlinear spring element based on a trilinear elastic-plastic material model is given for the concrete railway structure during an earthquake. A substructure model where a train runs repeatedly has been devised to obtain an approximated combined motion of the long train with many cars connected and the railway structure during an earthquake. A modal method has been developed to solve large-scale nonlinear equations of motion of the train and railway structure effectively. Based on the present method, a computer program DIASTARS for the dynamic interaction analysis of a Shinkansen train (high-speed train in Japan) and the railway structure during an earthquake has been developed. Numerical examples are demonstrated.

Author(s):  
M. Tanabe ◽  
N. Matsumoto ◽  
H. Wakui ◽  
M. Sogabe ◽  
H. Okuda ◽  
...  

In this paper, a simple and efficient numerical method to solve for the dynamic interaction of a Shinkansen train (high-speed train in Japan) and railway structure during an earthquake is given. The motion of the train is modeled in multibody dynamics with nonlinear springs and dampers used to connect components. An efficient mechanical model for contact dynamics between wheel and rail during an earthquake is presented. The railway structure is modeled with various finite elements. A three-dimensional nonlinear spring element based on a trilinear elastic-plastic material model is given for the concrete railway structure during an earthquake. A loop structure model has been devised to obtain an approximated combined motion of the train and railway structure during an earthquake. A modal method has been developed to solve large-scale nonlinear equations of motion of the train and railway structure effectively. Based on the present method, a computer program DIASTARS for the dynamic interaction of a Shinkansen train and railway structure during an earthquake has been developed. Numerical examples are demonstrated.


2012 ◽  
Vol 579 ◽  
pp. 473-482 ◽  
Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Masamichi Sogabe ◽  
Nobuyuki Matsumoto ◽  
Keiichi Gotou ◽  
...  

The computational method to solve for the dynamic interaction between a high-speed train and the railway structure including derailment during an earthquake is given. The motion of the train is expressed in multibody dynamics. Efficient mechanical models to express contact-impact behaviors between wheel and the track structure including derailment during an earthquake are given. Rail and track elements with multibody dynamics and FEM combined have been developed. A nonlinear spring element based on a trilinear elastic-plastic material model with the kinematic hardening is given for a concrete railway structure under cyclic loads during an earthquake. The motion of a railway structure is modeled with various finite elements and also with rail and track elements. A modal reduction is applied to solve the problem effectively. An exact time integration scheme has been developed that is free from the round-off error for very small time increments needed to solve the interaction between wheel and railway structure including derailment during an earthquake. Numerical examples are demonstrated.


Author(s):  
Makoto Tanabe ◽  
Hajime Wakui ◽  
Nobuyuki Matsumoto

Abstract This paper describes a finite element formulation to solve for the combined dynamic behavior of Shinkansen (bullet train) vehicles, irregular rails, and bridges. A mechanical model for interactions between a wheel and an irregular rail is discussed. The bridge is modeled by use of various finite elements. An efficient numerical method, based on modal analysis and exact time integration, is described for solving the nonlinear equations of motion of the Shinkansen vehicle and bridge. The convergence of the exact time integration scheme is discussed and compared with a previous numerical time integration scheme. A finite element computer program has been developed to analyze the dynamic response of Shinkansen vehicles operating at high speed over irregular rails and a bridge. Numerical examples are presented to demonstrate the effectiveness and validity of the present approach.


2017 ◽  
Vol 199 ◽  
pp. 2729-2734 ◽  
Author(s):  
M. Tanabe ◽  
K. Goto ◽  
T. Watanabe ◽  
M. Sogabe ◽  
H. Wakui ◽  
...  

2014 ◽  
Vol 629 ◽  
pp. 426-430
Author(s):  
Sufiah Mohd Salleh ◽  
Mohamed Sukri Mat Ali ◽  
Sheikh Ahmad Zaki Shaikh Salim ◽  
Sallehuddin Muhamad ◽  
Muhammad Iyas Mahzan

Flow structure over bluff bodies is more complex in wake. The wake is characterized by the unsteady behavior of the flow, large scale turbulent structure and strong recirculation region. For the case of high speed train, wake can be observed at the gap between the coaches and also on the rear coach. Wakes formation of high speed train are generated by free shear layer that is originated from the flow separation due to the sudden change in geometry. RANS and LES turbulent models are used in this paper to stimulate the formation of wakes and behavior of the flow over a simplified high speed train model. This model consists of two coaches with the gap between them is 0.5D. A total of four simulations have been made to study the effect of computational domain size and grid resolution on wake profiles of a simplified high speed train. The result shows that the computational domain can be reduced by decreasing the ground distance to 1.5D without affecting the magnitude of the wake profile. Both RANS and LES can capture the formation of the wake, but LES requires further grid refinement as the results between the two grid resolutions are grid dependent.


2020 ◽  
Vol 157 ◽  
pp. 06015
Author(s):  
Leonid Diachenko ◽  
Vladimir Smirnov

This work contains the results of a research of the dynamic processes in the “bridge-train” system while passenger trains move over a bridge structure (overpass) in high-speed. The article presents the methodology of mathematic modelling, and the basic differential equations of the studied system elements motion are provided. Also there is a description of dynamic interaction of the bridge-train system numerical model based on the FEM. In general, taking into account in the design scheme of the “bridge” system not only spans, but also piers with a foundation, it is possible to more accurately determine the values of the bridge natural frequencies, which is a key factor in assessing the dynamic response of a structure when passing a high-speed train.


Sign in / Sign up

Export Citation Format

Share Document