Effect of In-Plane Forces on Sound Radiation From Convected, Fluid Loaded Plates

2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Peter L. Schmidt ◽  
Kenneth D. Frampton

The purpose of this work is to study the effects that plane stress has on the acoustic radiation from structures subjected to convected fluid loading. It is well established that fluid flow can have significant effects on structural acoustic behavior, along with the fact that induced coupling between discrete modes of vibration becomes significant as flow velocity increases. Work in this area has been confined to flows in air, over unloaded structures, with the effects on sound radiation efficiency, kinetic energy, and sound power radiation quantified and compared for various flow speeds. Theoretical development of the equations governing the vibration of a simply-supported plate subjected to in-plane forces in an infinite baffle and a semi-infinite flowing medium is presented along with a method for coupling these systems. Computational results are presented illustrating the effect of coupling on the sound power radiated from the plate in both subsonic and supersonic flows, for a variety of stress loading cases. It is shown that the state of stress in the plate affects the radiation efficiency of the plate, and that increasing stress eliminates a frequency shift in radiated sound power shown to exist for both subsonic and supersonic flow in previous work.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Tanmoy Bose ◽  
Amiya R. Mohanty

Here, sound radiation characteristics of a rectangular plate having a side crack of different crack lengths, orientations, and positions are studied considering clamped boundary conditions. First, a free and forced vibration response analysis of a cracked plate is done using the Ritz method. Orthogonal polynomials are used for faster convergence and some corner functions are used to generate the effect of a crack. Radiated sound power and radiation efficiency of the cracked plate are computed by the quadruple integration. A convergence test of radiation efficiency is carried out to fix the number of polynomials and corner functions in the analysis. It is found that the radiation efficiency and radiated sound power computed by the Ritz method are close to the same obtained from the boundary element method (BEM). The natural frequencies computed using the Ritz method are also found to be close to that obtained from the finite element method (FEM). The radiation efficiency curves of different modes are shown for a change in crack length, orientation and position. Finally, the variations of normalized sound power are shown to be due to a change in the crack parameters.


1985 ◽  
Vol 107 (1) ◽  
pp. 67-73 ◽  
Author(s):  
A. F. Seybert ◽  
P. J. Bowles

This study examines the sound radiation efficiency of uniform, mass-loaded, and stiffened beams. The radiation efficiency of vibrating beams is determined using a finite element vibration model of the beam and a numerical approach to determine the radiated sound field. The radiation efficiency of mass-loaded and stiffened beams deviates from that of the uniform beam for frequencies near and below coincidence. The radiation efficiency of the nonuniform beams depends on the change in natural frequency and the distortion of the mode shape of the vibrating beam. Near coincidence, the radiation efficiency of nonuniform beams approaches that of the uniform beam. Above coincidence, all beams exhibit a radiation efficiency of unity.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Bipin Kumar ◽  
Vinayak Ranjan ◽  
Mohammad Sikandar Azam ◽  
Piyush Pratap Singh ◽  
Pawan Mishra ◽  
...  

A comparison of sound radiation behavior of plate in air medium with attached discrete patches/point masses having different thickness variations with different taper ratio of 0.3, 0.6, and 0.9 is analysed. Finite element method is used to find the vibration characteristics while Rayleigh integral is used to predict the sound radiation characteristics. Minimum peak sound power level obtained is at a taper ratio of 0.6 with parabolic increasing-decreasing thickness variation for plate with four discrete patches. At higher taper ratio, linearly increasing-decreasing thickness variation is another alternative for minimum peak sound power level suppression with discrete patches. It is found that, in low frequency range, average radiation efficiency remains almost the same, but near first peak, four patches or four point masses cause increase in average radiation efficiency; that is, redistribution of point masses/patches does have effect on average radiation efficiency at a given taper ratio.


2015 ◽  
Vol 07 (05) ◽  
pp. 1550072 ◽  
Author(s):  
N. Chandra ◽  
S. Raja ◽  
K. V. N. Gopal

The vibration, sound radiation and transmission characteristics of plates with various functionally graded materials (FGM) are explored and a detailed investigation is presented on the influence of specific material properties on structural–acoustic behavior. An improved model based on a simplified first order shear deformation theory along with a near-field elemental radiator approach is used to predict the radiated acoustic field associated with a given vibration and acoustic excitation. Various ceramic materials suitable for engineering applications are considered with aluminum as the base metal. A power law is used for the volume fraction distribution of the two constitutive materials and the effective modulus is obtained using the Mori–Tanaka homogenization scheme. The structural–acoustic response of these FGM plates is presented in terms of the plate velocity, radiated sound power, sound radiation efficiency for point and uniformly distributed load cases. Increase in both vibration and acoustic response with increase in power law index is observed for the lower order modes. The vibro–acoustic metrics such as root-mean-squared plate velocity, overall sound power, frequency averaged radiation efficiency and transmission loss, are used to rank these materials for vibro–acoustically efficient combination. Detailed analysis has been made on the factors influencing the structural–acoustic behavior of various FGM plates and relative ranking of particular ceramic/metal combinations.


2011 ◽  
Vol 291-294 ◽  
pp. 1961-1964
Author(s):  
Guang Liang Zhao

This paper takes marine Kingsbury sliding thrust bearing as the research object and conducts the finite element dynamic analysis with the aid of ANSYS software. On this basis, the acoustic boundary element model of a sliding thrust bearing shell is established with the ANSYS dynamic analysis results as the boundary excitation conditions. Besides, the radiated sound power of the shell is calculated by indirect boundary element method in SYNOSISE software. The influence of different condition parameters on the radiated sound power of the shell is perceived through the analysis of several rotation-thrust conditions. As for the special structure of this kind of sliding-thrust bearing, this paper states the impact of the supporting structure performance parameters, the pad number and damp of shell on the shell radiated sound power. The optimized measure for the supporting structure and the plan concerning the pad number’s selection lays the theoretical basis for damping and noise-reducing research on marine sliding-thrust bearing and its rotor system.


2021 ◽  
Vol 263 (3) ◽  
pp. 3396-3406
Author(s):  
Scott Sommerfeldt

Active structural acoustic control is an active control method that controls a vibrating structure in a manner that reduces the sound power radiated from the structure. Such methods focus on attenuating some metric that results in attenuated sound power, while not necessarily minimizing the structural vibration. The work reported here outlines the weighted sum of spatial gradients (WSSG) control metric as a method to attenuate structural radiation. The WSSG method utilizes a compact error sensor that is able to measure the acceleration and the acceleration gradients at the sensor location. These vibration signals are combined into the WSSG metric in a manner that is closely related to the radiated sound power, such that minimizing the WSSG also results in a minimization of the sound power. The connection between WSSG and acoustic radiation modes will be highlighted. Computational and experimental results for both flat plates and cylindrical shells will be presented, indicating that the WSSG method can achieve near optimal attenuation of the radiated sound power with a minimum number of sensors.


Author(s):  
Manuel Collet ◽  
Morvan Ouisse ◽  
Mohammed Ichchou ◽  
Roger Ohayon

In this paper, we present an application of the Floquet-Bloch theorem in the context of electrodynamics for vibroacoustic power flow optimization by mean of distributed and shunted piezoelectric patches. The main purpose of this work is first to propose a dedicated numerical approach able to compute the multi-modal wave dispersions curves into the whole first Brillouin zone for periodically distributed 2D shunted piezomechanical systems. By using two specific indicators evaluating the evanescent part of Bloch’s waves and the induced electronic damping, we optimize the piezoelectric shunting electrical impedance for controlling energy diffusion into the proposed semi-active distributed set of cells. Sound radiation efficiency is also analyzed for showing the effects of such smart metamaterial for controlling acoustical noise.


Sign in / Sign up

Export Citation Format

Share Document