Surface Reconstruction Using Dexel Data From Three Sets of Orthogonal Rays

Author(s):  
Weihan Zhang ◽  
Ming C. Leu

Triple-dexel modeling is a geometric representation method, which depicts the intersection of a solid with rays cast in three orthogonal directions. Due to its fast Boolean operations, simple data structure, and easy implementation, triple-dexel modeling is highly suitable for real-time graphics-based simulation applications such as numerical control (NC) machining verification and virtual sculpting. This paper presents a novel surface reconstruction method from triple-dexel data by first converting the triple-dexel data into contours on three sets of orthogonal slices and then generating the solid’s boundary surface in triangular facets from these contours. The developed method is faster than the voxel-based method, and the reconstructed surface model is more accurate than the surface reconstructed from voxel representation using the marching cube algorithm. Examples are given to demonstrate the ability of surface reconstruction from the triple-dexel model in virtual sculpting.

Author(s):  
Weihan Zhang ◽  
Ming C. Leu

This paper presents a novel method for surface reconstruction from triple dexel data for virtual sculpting. A triple dexel based virtual sculpting system is developed to provide the capability of interactive solid modeling with haptic interface. A solid model is converted to triple dexel data, which depicts the intersections of the solid with rays cast in three orthogonal directions, and modified during the virtual sculpting process. The boundary of the tool swept volume is computed based on the Sweep Differential Equation method. Contour generation and combination algorithms convert the triple dexel data to three sets of orthogonal slices of contours. A tiling algorithm then generates the solid’s boundary surface in triangular facets from these contours. Examples are given to demonstrate the ability of the developed method and software to realistically simulate the physical sculpting process and to allow viewing the sculpted models in any directions.


2014 ◽  
Vol 618 ◽  
pp. 443-447
Author(s):  
Wei Wang ◽  
Dong Qiang Gao ◽  
Jiang Miao Yi

Use Geomagic Qualify software, take the distance between the measure point and the surface model as the main evaluation index, respectively evaluate the quality of the shoe last surface reconstructed by tradition surface modeling way and quickly surface modeling approach, through 3D comparison, 2D comparison and special point comparison, get the 3D deviation chart and the error percentage distribution list, through the analysis and comparison of the charts, the two ways of surface reconstruction method are in line with the requirements of the surface, select the appropriate method of surface reconstruction according to the different requirements of surface reconstruction quality, provide the reference basis to surface measurement and surface reconstruction of other models.


Author(s):  
S. Song ◽  
R. Qin

Abstract. Image-based 3D modelling are rather mature nowadays with well-acquired images through standard photogrammetric processing pipeline, while fusing 3D dataset generated from images with different views for surface reconstruction remains to be a challenge. Meshing algorithms for image-based 3D dataset requires visibility information for surfaces and such information can be difficult to obtain for 3D point clouds generated from images with different views, sources, resolutions and uncertainties. In this paper, we propose a novel multi-source mesh reconstruction and texture mapping pipeline optimized to address such a challenge. Our key contributions are 1) we extended state-of-the-art image-based surface reconstruction method by incorporating geometric information produced by satellite images to create wide-area surface model. 2) We extended a texture mapping method to accommodate images acquired from different sensors, i.e. side-view perspective images and satellite images. Experiments show that our method creates conforming surface model from these two sources, as well as consistent and well-balanced textures from images with drastically different radiometry (satellite images vs. street-view level images). We compared our proposed pipeline with a typical fusion pipeline - Poisson reconstruction and the results show that our pipeline shows distinctive advantages.


2011 ◽  
Vol 308-310 ◽  
pp. 280-283
Author(s):  
Fu Zhong Wu

A free form surface reconstruction method based on least square support vector regression is presented. Firstly in order to eliminate noise points, some sample points are chosen from the measured data to construct LS-SVM model. Thus a LS-SVM model to approximate the measured points is obtained. And the distribution probability of the approximation error is figured out. In result, the noise points are eliminated when their error probability is less than the specified threshold value. Then the boundary points are extracted. Lastly the surface model is reconstructed by use of the measured points from which noise points have been eliminated. The results indicate that the reconstruction precision can satisfy the demands of engineering application.


2011 ◽  
Vol 295-297 ◽  
pp. 1065-1069 ◽  
Author(s):  
Xue Ming He ◽  
Ying Xue ◽  
Cheng Gang Li ◽  
Chen Liang Hua ◽  
Yi Lu

In this paper, it is proposed a new method of free-from surface’s reverse engineering, making data acquisition and surface reconstruction form closed loop system, solving no feedback problems in the measuring and modeling process, shortening the time of the whole reverse engineering, improving the quality of reconstructed models. The core of this paper is used the CMM adaptive measuring method and non-uniform b-spline surface reconstruction method, integrating the free-from surface measuring and modeling in a closed loop system, realizing the CMM real-time online measurement and reconstructed surface real-time update.


Author(s):  
Hong-Tzong Yau ◽  
Lee-Sen Tsou

In multi-axis machining of dies and molds with complex sculptured surfaces, numerical control (NC) simulation/verification is a must for the avoidance of expensive rework and material waste. Despite the fact that NC simulation has been extensively used by industries for many years, efficient, accurate, and reliable view-independent simulation of multi-axis NC machining still remains a difficult challenge. This paper presents the use of adaptive voxel data structure in conjunction with the modeling of a universal cutter for the development of an efficient and reliable multi-axis (typically five-axis) simulation procedure. The octree-based voxel representation of the workpiece saves a significant amount of memory space without sacrificing the simulation accuracy. Rendering of the voxel-based model is view independent and does not suffer from any aliasing effect, due to the real-time triangulation of the boundary surfaces using an extended marching cube algorithm. Implicit algebraic equations are used to model the automatically programed tool geometry, which can represent a universal cutter with high precision. In addition, the proposed method allows users to perform error analysis and gouging detection by comparing the machined surfaces with the original computer-aided design (CAD) model. Illustration of the implementation and experimental results demonstrate that the proposed method is reliable, accurate, and highly efficient.


2014 ◽  
Vol 971-973 ◽  
pp. 402-405
Author(s):  
Zhou Wen ◽  
Jun Ling Zhang ◽  
Xiu Duan Gong

Globular indexing CAM mechanism is a good indexing mechanism. As the working curve of CAM contour surface is no extending curved surface, there is certain difficulty to design processing. It is new kinds of design method that reverse engineering apply in rapid modeling of curved CAM. In this way, designer can complete curve of CAM reverse modeling, and the rationality of the model is verified. At the same time, it also can reverse modeling and the subsequent development of other products to provide a reference.


2003 ◽  
Vol 3 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Chuan-Chu Kuo ◽  
Hong-Tzong Yau

In the framework of Virtual CMM [1], virtual parts are proposed to be constructed as triangulated surface models. This paper presents a novel surface reconstruction method to the creation of virtual parts. It is based on the idea of identification and sculpting of concave regions of a Delaunay triangulation of the sample data. The proposed algorithm is capable of handling the reconstruction of surfaces with or without boundaries from unorganized points. Comparisons with other Delaunay-based algorithms show that it is more efficient in that it can optimally adapt to the geometric complexity of the sampled object. To validate the proposed algorithm, some detailed illustrations are given.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1414 ◽  
Author(s):  
Qian Qian ◽  
Bingnan Wang ◽  
Xiaoning Hu ◽  
Maosheng Xiang

A digital elevation model (DEM) can be obtained by removing ground objects, such as buildings, in a digital surface model (DSM) generated by the interferometric synthetic aperture radar (InSAR) system. However, the imaging mechanism will cause unreliable DSM areas such as layover and shadow in the building areas, which seriously affect the elevation accuracy of the DEM generated from the DSM. Driven by above problem, this paper proposed a novel DEM reconstruction method. Coherent Markov random field (CMRF) was first used to segment unreliable DSM areas. With the help of coherence coefficients and residue information provided by the InSAR system, CMRF has shown better segmentation results than traditional traditional Markov random field (MRF) which only use fixed parameters to determine the neighborhood energy. Based on segmentation results, the hierarchical adaptive surface fitting (with gradually changing the grid size and adaptive threshold) was set up to locate the non-ground points. The adaptive surface fitting was superior to the surface fitting-based method with fixed grid size and threshold of height differences. Finally, interpolation based on an inverse distance weighted (IDW) algorithm combining coherence coefficient was performed to reconstruct a DEM. The airborne InSAR data from the Institute of Electronics, Chinese Academy of Sciences has been researched, and the experimental results show that our method can filter out buildings and identify natural terrain effectively while retaining most of the terrain features.


Sign in / Sign up

Export Citation Format

Share Document