Theories for Elastic Plates Via Orthogonal Polynomials

1981 ◽  
Vol 48 (4) ◽  
pp. 900-904 ◽  
Author(s):  
S. Krenk

A complementary energy functional is used to derive an infinite system of two-dimensional differential equations and appropriate boundary conditions for stresses and displacements in homogeneous anisotropic elastic plates. Stress boundary conditions are imposed on the faces a priori, and this introduces a weight function in the variations of the transverse normal and shear stresses. As a result the coupling between the two-dimensional differential equations is described in terms of a single difference operator. Special attention is given to a truncated system of equations for bending of transversely isotropic plates. This theory has three boundary conditions, like Reissner’s, but includes the effect of transverse normal strain, essentially through a reinterpretation of the transverse displacement function. Full agreement with general integrals to the homogeneous three-dimensional equations is established to within polynomial approximation.

In this paper (part I) we establish a theory for stretching and bending of laminated elastic plates in which the laminae are different isotropic linearly elastic materials. The theory gives exact solutions of the three-dimensional elasticity equations that satisfy all the interface traction and displacement continuity conditions, with no traction on the lateral surfaces; the only restriction is that edge boundary conditions can be satisfied only in an average manner, rather than point by point. The method, which is based on a generalization of Michell’s exact plane stress theory, yields exact solutions for each lamina. These solutions are generated in a very straightforward manner by solutions of the approximate two-dimensional classical equations of laminate theory and contain sufficient arbitrary constants to enable all the continuity and lateral surface boundary conditions to be satisfied. The values of the constants depend only on the lamina thicknesses and the elastic constants. Thus, for a given laminate and for any boundary-value problem , it is necessary only to solve the appropriate two-dimensional plane problem, and the corresponding exact three-dimensional laminate solution follows by straightforward substitutions. The two-dimensional solution may be derived by any of the available methods, including numerical methods. An important feature of the theory is that it determines the interfacial shearing tractions, as well as the in-plane stress components. The procedure is illustrated by applying the theory to three problems involving stretching and bending of laminated plates containing circular holes.


1998 ◽  
Vol 65 (1) ◽  
pp. 178-183 ◽  
Author(s):  
S. Kapuria ◽  
P. C. Dumir ◽  
S. Segupta

Three-dimensional solution in terms of potential functions is presented for a transversely isotropic piezoelectric clamped circular plate subjected to axisymmetric ther-moelectromechanical load. The boundary conditions are satisfied using Fourier-Bessel expansions yielding two uncoupled infinite systems of algebraic equations for the arbitrary constants. These are solved to any desired degree of accuracy by truncating to finite set of equations. Results are presented to illustrate the effect of the thickness parameter. These would help assess two-dimensional theories of piezoelectric plates.


Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


Author(s):  
Victor Revenko ◽  
Andrian Revenko

The three-dimensional stress-strain state of an isotropic plate loaded on all its surfaces is considered in the article. The initial problem is divided into two ones: symmetrical bending of the plate and a symmetrical compression of the plate, by specified loads. It is shown that the plane problem of the theory of elasticity is a special case of the second task. To solve the second task, the symmetry of normal stresses is used. Boundary conditions on plane surfaces are satisfied and harmonic conditions are obtained for some functions. Expressions of effort were found after integrating three-dimensional stresses that satisfy three equilibrium equations. For a thin plate, a closed system of equations was obtained to determine the harmonic functions. Displacements and stresses in the plate were expressed in two two-dimensional harmonic functions and a partial solution of the Laplace equation with the right-hand side, which is determined by the end loads. Three-dimensional boundary conditions were reduced to two-dimensional ones. The formula was found for experimental determination of the sum of normal stresses via the displacements of the surface of the plate.


2020 ◽  
Vol 20 (07) ◽  
pp. 2071005
Author(s):  
Y. B. Yang ◽  
Y. Z. Liu

Lateral buckling of cantilevered circular arches under various end moments is studied using an analytical approach. Three types of conservative moments are considered, i.e. the quasi-tangential moments of the 1st and 2nd kinds, and the semi-tangential moment. The induced moments associated with each of the moment mechanisms undergoing three-dimensional rotations are included in the Newman boundary conditions. Using the differential equations available for the out-of-plane buckling of curved beams, the analytical solutions are derived for a cantilevered circular arch, which can be used as the benchmarks for calibration of other methods of analysis.


1998 ◽  
Vol 77 (1) ◽  
pp. 231-256 ◽  
Author(s):  
S. Rao ◽  
C. Hernandez ◽  
J. P. Simmons ◽  
T. A. Parthasarathy ◽  
C. Woodward

1981 ◽  
Vol 103 (2) ◽  
pp. 243-251 ◽  
Author(s):  
A. Floquet ◽  
D. Play

Boundary conditions were arbitrarily specified in an earlier two dimensional (2D) analysis of contact temperature. In this new work a general three dimensional (3D) Fourier transform solution is obtained from which for specific cases, the boundary conditions can be estimated. Further, experimental verification of 3D analysis was performed using infra-red technique.


2017 ◽  
Vol 29 (6) ◽  
pp. 1255-1271 ◽  
Author(s):  
MingHao Zhao ◽  
Yuan Li ◽  
CuiYing Fan

An arbitrarily shaped planar crack under different thermal and electric boundary conditions on the crack surfaces is studied in three-dimensional transversely isotropic thermopiezoelectric media subjected to thermal–mechanical–electric coupling fields. Using Hankel transformations, Green functions are derived for unit point extended displacement discontinuities in three-dimensional transversely isotropic thermopiezoelectric media, where the extended displacement discontinuities include the conventional displacement discontinuities, electric potential discontinuity, as well as the temperature discontinuity. On the basis of these Green functions, the extended displacement discontinuity boundary integral equations for arbitrarily shaped planar cracks in the isotropic plane of three-dimensional transversely isotropic thermopiezoelectric media are established under different thermal and electric boundary conditions on the crack surfaces, namely, the thermally and electrically impermeable, permeable, and semi-permeable boundary conditions. The singularities of near-crack border fields are analyzed and the extended stress intensity factors are expressed in terms of the extended displacement discontinuities. The effect of different thermal and electric boundary conditions on the extended stress intensity factors is studied via the extended displacement discontinuity boundary element method. Subsequent numerical results of elliptical cracks subjected to combined thermal–mechanical–electric loadings are obtained.


2016 ◽  
Vol 23 (19) ◽  
pp. 3196-3215 ◽  
Author(s):  
Wei He ◽  
Chuan Yang ◽  
Juxing Zhu ◽  
Jin-Kun Liu ◽  
Xiuyu He

In this paper, boundary control is designed to suppress the vibration of a nonlinear three-dimensional Euler–Bernoulli beam. Considering the coupling effect between the axial deformation and the transverse displacement, the dynamics of the beam are modeled as a distributed parameter system described by three partial differential equations (PDEs) and 12 ordinary differential equations (ODEs). Firstly, model-based boundary control is designed based on a mathematical model of the system. Subsequently, adaptive control is proposed when there are parameter uncertainties in the model. The uniform boundedness and uniform ultimate boundedness are proved under the proposed control laws. Finally, numerical simulations illustrate the effectiveness of the results.


Sign in / Sign up

Export Citation Format

Share Document