On Symmetric Buckling of a Finite Flat-Lying Heavy Sheet

1984 ◽  
Vol 51 (2) ◽  
pp. 278-282 ◽  
Author(s):  
C. Y. Wang

An elastic sheet with non-negligible density and finite length lies horizontally on the ground. The ends are clamped and subjected to compressive forces. Depending on the force, the sheet may be regarded as “long” or “short” with different characteristics. The critical buckling load, redefined as the force below which the sheet will always return to the horizontal state under any finite disturbance, is higher than the Euler buckling load of a weightless sheet. When deflections are small and finite the sheet is stable for given end displacement, but is unstable for given force. Approximate analytic solutions compare well with the results of exact numerical integration.

1981 ◽  
Vol 23 (5) ◽  
pp. 217-219 ◽  
Author(s):  
C.-Y. Wang

A curved elastic sheet is flattened on a rigid flat plate by vertical end forces. The problem is governed by a non-dimensional parameter, B, which signifies the relative importance of flexural rigidity to the applied force and the natural radius. The elastica equations are solved by elliptic functions, perturbation for small B, and numerical integration. Force-displacement characteristics and sheet configurations are found. The results may be applied to sandwiched leaf springs.


2017 ◽  
Vol 103 ◽  
pp. 343-357 ◽  
Author(s):  
S.K. Georgantzinos ◽  
S. Markolefas ◽  
G.I. Giannopoulos ◽  
D.E. Katsareas ◽  
N.K. Anifantis

Author(s):  
Tuoya Sun ◽  
Junhong Guo ◽  
E. Pan

AbstractA mathematical model for nonlocal vibration and buckling of embedded two-dimensional (2D) decagonal quasicrystal (QC) layered nanoplates is proposed. The Pasternak-type foundation is used to simulate the interaction between the nanoplates and the elastic medium. The exact solutions of the nonlocal vibration frequency and buckling critical load of the 2D decagonal QC layered nanoplates are obtained by solving the eigensystem and using the propagator matrix method. The present three-dimensional (3D) exact solution can predict correctly the nature frequencies and critical loads of the nanoplates as compared with previous thin-plate and medium-thick-plate theories. Numerical examples are provided to display the effects of the quasiperiodic direction, length-to-width ratio, thickness of the nanoplates, nonlocal parameter, stacking sequence, and medium elasticity on the vibration frequency and critical buckling load of the 2D decagonal QC nanoplates. The results show that the effects of the quasiperiodic direction on the vibration frequency and critical buckling load depend on the length-to-width ratio of the nanoplates. The thickness of the nanoplate and the elasticity of the surrounding medium can be adjusted for optimal frequency and critical buckling load of the nanoplate. This feature is useful since the frequency and critical buckling load of the 2D decagonal QCs as coating materials of plate structures can now be tuned as one desire.


1993 ◽  
Vol 115 (4) ◽  
pp. 219-222
Author(s):  
S. J. Cox

We examine submerged nonlinear tubular columns with slenderness ratios between 40 and 160 and ratios of diameter to thickness between 20 and 50. We demonstrate that the column’s Euler buckling load can be increased nearly 30 percent by a volume preserving taper of only a few degrees. We determine the effect of hydrostatic pressure and self-weight on such conical columns and offer some preliminary remarks on the role played by model imperfections.


2012 ◽  
Vol 629 ◽  
pp. 95-99 ◽  
Author(s):  
N. Hamani ◽  
D. Ouinas ◽  
N. Taghezout ◽  
M. Sahnoun ◽  
J. Viña

In this study, a buckling analysis is performed on rectangular composite plates with single and double circular notch using the finite element method. Laminated plates of carbon/bismaleimde (IM7/5250-4) are ordered symmetrically as follows [(θ/-θ)2]S. The buckling strength of symmetric laminated plates subjected to uniaxial compression is highlighted as a function of the fibers orientations. The results show that whatever the notch radius, the buckling load is almost stable. Increasing the degree of anisotropy significantly improves critical buckling load.


2016 ◽  
Vol 710 ◽  
pp. 357-362
Author(s):  
Irene Scheperboer ◽  
Evangelos Efthymiou ◽  
Johan Maljaars

Aluminium plates containing a single hole or multiple holes in a row are recently becoming very popular among architects and consultant engineers in many constructional applications, due to their reduced weight, as well as facilitating ventilation and light penetration of the buildings. However, there are still uncertainties concerning their structural behaviour, preventing them from wider utilization. In the present paper, local buckling phenomenon of perforated aluminium plates has been studied using the finite element method. For the purposes of the research work, plates with simply supported edges in the out-of-plane direction and subjected to uniaxial compression are examined. In view of perforations, circular cut-outs and the total cut-out size has been varied between 5 and 40% of the total plate area. Moreover, different perforation patterns have been investigated, from a single, central cut-out to a more refined pattern consisting of up to 25 holes equally distributed over the plate. Regarding the material characteristics, several aluminium alloys are considered and compared to steel grade A36 on plates of different slenderness. For each case the critical (Euler) buckling load and the ultimate resistance has been determined.A study into the boundary conditions of the plate showed that the restrictions at the edges parallel to the load direction have a large influence on the critical buckling load. Restraining the top or bottom edge does not significantly influence the resistance of the plate.The results showed that the ultimate resistance of aluminium plates containing multiple holes occurs at considerably larger out-of-plane displacement as that of full plates. For very large total cut-out, a plate containing a central hole has a larger resistance than a plate with equal cut-out percentage but with multiple holes. The strength and deformation in the post-critical regime, i.e. the difference between the critical buckling load and the ultimate resistance, differs significantly for different number of holes and cut-out percentage.


Author(s):  
A Ghorbanpour Arani ◽  
M Mohammadimehr ◽  
A R Saidi ◽  
S Shogaei ◽  
A Arefmanesh

In this article, the buckling analysis of a double-walled carbon nanotube (DWCNT) subjected to a uniform internal pressure in a thermal field is investigated. The effects of the temperature change, the surrounding elastic medium based on the Winkler model, and the van der Waals forces between the inner and the outer tubes are considered using the continuum cylindrical shell model. The small-length scale effect is also included in the present formulation. The results show that there is a unique buckling mode corresponding to each critical buckling load. Moreover, it is shown that the non-local critical buckling load is lower than the local critical buckling load. It is concluded that, at low temperatures, the critical buckling load for the infinitesimal buckling of a DWCNT increases as the magnitude of temperature change increases whereas at high temperatures, the critical buckling load decreases with the increasing of the temperature.


Sign in / Sign up

Export Citation Format

Share Document