Transverse Impact of a Hyperelastic Stretched String

1985 ◽  
Vol 52 (1) ◽  
pp. 137-143 ◽  
Author(s):  
M. F. Beatty ◽  
J. B. Haddow

Governing equations are derived for the plane motion of a stretched hyperelastic string subjected to a suddenly applied force at one end. These equations can be put in the form of a quasilinear system of first-order partial differential equations, which is totally hyperbolic for an admissible strain energy function. There are, in general, two wave speeds and two corresponding shock speeds. Special consideration is given to the jump relations across the shocks. Similarity solutions for a string moved at one end in loading or unloading are obtained for a general hyperelastic solid. The results are applicable to the familiar neo-Hookean or Mooney-Rivlin material, and the nature of the solution for another special hyperelastic material is discussed. These solutions are valid for a semi-infinite string, or until the first reflection occurs. It is shown that a special case of the similarity solution is valid for the normal impact of a stretched string by a constant speed, point application of load. Exact solution to the equations for the neo-Hookean model is derived in terms of elliptic integrals, and some numerical results are provided.

1989 ◽  
Vol 56 (2) ◽  
pp. 459-465 ◽  
Author(s):  
J. L. Wegner ◽  
J. B. Haddow ◽  
R. J. Tait

The governing equations for the finite deformation plane motion of a hyperelastic string are obtained in conservation form. These equations and the corresponding jump relations are used to investigate the response of a symmetrically-plucked string when it is suddenly released. Similarity solutions, which are valid until the first reflection occurs at a fixed end, are obtained for two strain energy functions. Justification is given for the use of isothermal strain energy functions.


2021 ◽  
pp. 107754632110004
Author(s):  
Hassan Afshari ◽  
Hossein Amirabadi

In this article, a comprehensive study is conducted on the free vibration analysis of rotating truncated conical shells reinforced with functionally graded agglomerated carbon nanotubes The shell is modeled based on the first-order shear deformation theory, and effective mechanical properties are calculated based on the Eshelby–Mori–Tanaka scheme along with the rule of mixture. By considering centrifugal and Coriolis accelerations and initial hoop tension, the set of governing equations is derived using Hamilton’s principle and is solved numerically using the differential quadrature method Convergence and accuracy of the presented model are confirmed and the effects of different parameters on the forward and backward frequencies of the rotating carbon nanotube-reinforced truncated conical shells are investigated.


1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


1976 ◽  
Vol 98 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Choong Se Kim ◽  
Paul M. Chung

The governing equations of thermal ignition are analyzed for porous solid fuel, such as coal, of various two-dimensional and axisymmetric geometries by the Laplace asymptotic method. Mass diffusion of the gaseous oxidant through the porous fuel is included. The nonlinear partial differential equations of energy and mass balances in time-space coordinates containing the Arrhenius volumic chemical reaction terms are analyzed. By employing the Laplace asymptotic technique and by invoking a certain limit theorem, the governing equations are reduced to a first order ordinary differential equation governing the fuel surface temperature, which is readily solved numerically. Detailed discussion of the effects of the various governing parameters on ignition is presented. Because of the basically closed-form nature of the solutions obtained, many general and fundamental aspects of the ignition criteria hitherto unknown are found.


2006 ◽  
Vol 5-6 ◽  
pp. 407-414 ◽  
Author(s):  
Mohammad Mohammadi Aghdam ◽  
M.R.N. Farahani ◽  
M. Dashty ◽  
S.M. Rezaei Niya

Bending analysis of thick laminated rectangular plates with various boundary conditions is presented using Generalized Differential Quadrature (GDQ) method. Based on the Reissner first order shear deformation theory, the governing equations include a system of eight first order partial differential equations in terms of unknown displacements, forces and moments. Presence of all plate variables in the governing equations provide a simple procedure to satisfy different boundary condition during application of GDQ method to obtain accurate results with relatively small number of grid points even for plates with free edges .Illustrative examples including various combinations of clamped, simply supported and free boundary condition are given to demonstrate the accuracy and convergence of the presented GDQ technique. Results are compared with other analytical and finite element predictions and show reasonably good agreement.


1969 ◽  
Vol 91 (3) ◽  
pp. 353-358 ◽  
Author(s):  
W. A. Gustafson ◽  
I. Pelech

The two-dimensional, incompressible laminar boundary layer on a strongly curved wall in a converging channel is investigated for the special case of potential velocity inversely proportional to the distance along the wall. Similarity solutions of the momentum equation are obtained by two different methods and the differences between the methods are discussed. The numerical results show that displacement and momentum thickness increase linearly with curvature while skin friction decreases linearly.


1955 ◽  
Vol 22 (1) ◽  
pp. 69-76
Author(s):  
B. A. Boley

Abstract The approximate theory derived in this paper describes, by means of a “traveling-wave” approach, the behavior of beams under transverse impact. Lateral impact is considered in detail, namely, one in which a section of the beam undergoes a sudden change in velocity or shear force. The theory considers the effects of shear deformations and of rotatory inertia according to Timoshenko’s model, and that of lateral contraction as suggested by Love. The governing equations and the boundary conditions are developed with the aid of an energy-variation technique. Numerical examples are given in which the behavior of the boundary layer near the point of impact is examined. For one of these the exact solution is available and is in agreement with the present approximate results. Some general considerations concerning the velocity of propagation also are discussed.


2007 ◽  
Vol 577 ◽  
pp. 287-307 ◽  
Author(s):  
D. EWING ◽  
W. K. GEORGE ◽  
M. M. ROGERS ◽  
R. D. MOSER

The governing equations for the two-point correlations of the turbulent fluctuating velocity in the temporally evolving wake were analysed to determine whether they could have equilibrium similarity solutions. It was found that these equations could have such solutions for a finite-Reynolds-number wake, where the two-point velocity correlations could be written as a product of a time-dependent scale and a function dependent only on similarity variables. It is therefore possible to collapse the two-point measures of all the scales of motions in the temporally evolving wake using a single set of similarity variables. As in an earlier single-point analysis, it was found that the governing equations for the equilibrium similarity solutions could not be reduced to a form that was independent of a growth-rate dependent parameter. Thus, there is not a single ‘universal’ solution that describes the state of the large-scale structures, so that the large-scale structures in the far field may depend on how the flow is generated.The predictions of the similarity analysis were compared to the data from two direct numerical simulations of the temporally evolving wakes examined previously. It was found that the two-point velocity spectra of these temporally evolving wakes collapsed reasonably well over the entire range of scales when they were scaled in the manner deduced from the equilibrium similarity analysis. Thus, actual flows do seem to evolve in a manner consistent with the equilibrium similarity solutions.


1960 ◽  
Vol 27 (1) ◽  
pp. 172-176 ◽  
Author(s):  
B. Karunes ◽  
E. T. Onat

The paper is concerned with the plane motion of a rigid-strain-hardening membrane attached to two parallel fixed supports. The membrane is subjected to a uniformly distributed transverse impulse and the subsequent motion of the membrane is to be determined with the particular emphasis on the variation of thickness in the final deflected shape. It is first shown that two essentially different initial modes of deformation exist depending on the average rate of hardening. For both modes, the analysis can be based on two types of waves of discontinuity until the moment when the compressive membrane forces occur in the middle region of the membrane. The presence of compressive forces will generally preclude the existence of a unique solution for further motion. The bending rigidity will probably have to be included into the analysis in order to obtain a unique solution. However, for the technically important rates of hardening and velocities, the kinetic energy of the membrane at the moment of occurrence of compressive forces is small compared with the initial energy, so that significant information could be obtained from the present analysis about the variation of thickness and hardening throughout the membrane.


Sign in / Sign up

Export Citation Format

Share Document