Experimental Evaluation of Creep Constitutive Equations for Type 304 Stainless Steel Under Non-Steady Multiaxial States of Stress

1986 ◽  
Vol 108 (2) ◽  
pp. 119-126 ◽  
Author(s):  
S. Murakami ◽  
N. Ohno ◽  
H. Tagami

In order to evaluate the validity and limitations of the creep-hardening surface model proposed by the present authors, a series of creep tests for type 304 stainless steel were performed at 600°C under various non-steady multiaxial loadings. The test time and the interval of stress change were 960 hr and 48 or 96 hr, respectively, and five kinds of stress histories consisting of randomly varying stress magnitude, stress direction and interval of stress change were employed. It was found that the creep-hardening surface model describes sufficiently well the creep behavior observed in this work.

2002 ◽  
Vol 11 (3) ◽  
pp. 247-262 ◽  
Author(s):  
Masao Sakane ◽  
Hiroto Tokura

This paper studies the biaxial creep damage of type 304 stainless steel at 923 K. Biaxial tension creep tests were carried out using cruciform specimens and the effect of stress biaxiality on rupture lifetime and creep voiding was discussed. Mises equivalent stress and the equivalent stress based on crack opening displacement were a suitable parameter to assess the biaxial creep damage. The equivalent stress proposed by Huddleston overestimated the biaxial creep damage by more than a factor of two. Stress biaxiality had almost no influence on the orientation of voided grain boundaries and the critical value ofparameter A. Tests of alternative loading direction significantly dispersed the biaxial creep damage resulting in larger creep lifetime.


1999 ◽  
Vol 122 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Takamoto Itoh ◽  
Xu Chen ◽  
Toshimitsu Nakagawa ◽  
Masao Sakane

This paper proposes a simple two-surface model for cyclic incremental plasticity based on combined Mroz and Ziegler kinematic hardening rules under nonproportional loading. The model has only seven material constants and a nonproportional factor which describes the degree of additional hardening. Cyclic loading experiments with fourteen strain paths were conducted using Type 304 stainless steel. The simulation has shown that the model was precise enough to calculate the stable cyclic stress-strain relationship under nonproportional loadings. [S0094-4289(00)00101-8]


1976 ◽  
Vol 98 (2) ◽  
pp. 106-112 ◽  
Author(s):  
A. Miller

For the deformation model developed in Part I, material constants are calculated from standard test data on type 304 stainless steel. With them, simulations are made of various types of tests, including tensile tests, strain-rate sensitivity, creep tests with stress drops, strain-controlled cycling, and creep-fatigue interaction. The simulations show general agreement with the corresponding experimental data for type 304, but in a few respects, quantitative improvements are required. Implications of the strengths and weaknesses of the new model are discussed.


1991 ◽  
Vol 58 (3) ◽  
pp. 623-630 ◽  
Author(s):  
Yukio Takahashi ◽  
Takashi Ogata

A simple elastic-plastic constitutive model based on the two-surface theory is developed to describe deformation behavior of austenitic stainless steels under multiaxial cyclic loading. Dependency of saturated stress range both on strain range and the proportionality of loading is considered. To establish a precise procedure for determination of material constants for nonproportional loading, the intervariable relation in the axial-torsional circular strain-path condition is studied in detail. A full procedure is then developed for determination of all material parameters. Finally, the effectiveness of the present model is demonstrated by application to axial-torsional cyclic tests for type 304 stainless steel at 550°C.


Alloy Digest ◽  
2016 ◽  
Vol 65 (2) ◽  

Abstract Outokumpu Type 630 is a martensitic age hardenable alloy of composition 17Cr-4Ni. The alloy has high strength and corrosion resistance similar to that of Type 304 stainless steel. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-1238. Producer or source: Outokumpu High Performance Stainless.


CORROSION ◽  
1972 ◽  
Vol 28 (7) ◽  
pp. 269-273 ◽  
Author(s):  
K. Elayaperumal ◽  
P. K. De ◽  
J. Balachandra

Sign in / Sign up

Export Citation Format

Share Document