Blade-Row Interaction in an Axial-Flow Subsonic Compressor Stage

1980 ◽  
Vol 102 (1) ◽  
pp. 169-177 ◽  
Author(s):  
H. E. Gallus ◽  
J. Lambertz ◽  
Th. Wallmann

This paper contains the results of the measurements of fluctuating pressures on the mid-span profile surfaces of both rotor and stator blades for several points of operation. By the aid of rotating probes behind the rotor, the shapes of the rotor wakes were measured, too. All the measurements have been performed twice, at first with guide vanes in front of the rotor, and afterwards without the latter. The results of the measurements are evaluated with respect to the parameters involved, like Strouhal-number, reduced frequency, and circumferential Mach number. The flow analysis is done for various wake-fields behind the rotor correspondent to different operation points. Emphasis is given to the establishment of correlations for the blade-row interaction and to the comparison of the measured pressure distributions with computed results according to well-known theoretical approaches.

Author(s):  
Milan V. Petrovic ◽  
George S. Dulikravich ◽  
Thomas J. Martin

By matching a well established fast through-flow analysis code and an efficient optimization algorithm, a new design system has been developed which optimizes hub and shroud geometry and inlet and exit flow-field parameters for each blade row of a multistage axial flow turbine. The compressible steady state inviscid through-flow code with high fidelity loss and mixing models, based on stream function method and finite element solution procedure, is suitable for fast and accurate flow calculation and performance prediction of multistage axial flow turbines at design and significant off-design conditions. A general-purpose hybrid constrained optimization package has been developed that includes the following modules: genetic algorithm, simulated annealing, modified Nelder-Mead method, sequential quadratic programming, and Davidon-Fletcher-Powell gradient search algorithm. The optimizer performs automatic switching among the modules each time when the local minimum is detected thus offering a robust and versatile tool for constrained multidisciplinary optimization. An analysis of the loss correlations was made to find parameters that have influence on the turbine performance. By varying seventeen variables per each turbine stage it is possible to find an optimal radial distribution of flow parameters at the inlet and outlet of every blade row. Simultaneously, an optimized meridional flow path is found that is defined by the optimized shape of the hub and shroud. The design system has been demonstrated using an example of a single stage transonic axial gas turbine, although the method is directly applicable to multistage turbine optimization. The comparison of computed performance of initial and optimized design shows significant improvement in the turbine efficiency at design and off-design conditions. The entire design optimization process is feasible on a typical single-processor workstation.


Author(s):  
Florian Danner ◽  
Christofer Kendall-Torry ◽  
Hans-Peter Kau

The sound arising from blade row interaction in open rotor propulsion systems is known to significantly contribute to overall noise emissions. The present paper therefore addresses the origination of rotor-rotor interaction noise from a pair of unducted counter-rotating fans. The focus is on the aerodynamic mechanisms that involve sound generation, in order to provide the physical understanding required to find noise-reducing means. Detailed insight into the underlying phenomena is provided on the basis of numerical simulations applying the unsteady Reynolds-averaged Navier-Stokes equations. The interaction mechanisms are identified by extracting the time-dependent disturbances of the flow field in the respective rotor relative frame of reference. Conclusions on the sources of interaction noise and potential noise-reducing means are drawn by evaluating polar directivities, blade surface pressure distributions and propagation characteristics.


1992 ◽  
Author(s):  
William W. Copenhaver ◽  
Chunill Hah ◽  
Steven L. Puterbaugh

A detailed aerodynamic study of a transonic, high-through-flow, single stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.


1987 ◽  
Vol 109 (3) ◽  
pp. 420-428 ◽  
Author(s):  
V. R. Capece ◽  
S. Fleeter

The fundamental flow physics of multistage blade row interactions is experimentally investigated, with unique data obtained which quantify the unsteady harmonic aerodynamic interaction phenomena. In particular, a series of experiments is performed in a three-stage axial flow research compressor over a range of operating and geometric conditions at high reduced frequency values. The multistage unsteady interaction effects of the following on each of the three vane rows are investigated: (1) the steady vane aerodynamic loading, (2) the waveform of the aerodynamic forcing function to each vane row, including both the chordwise and traverse gust components.


1989 ◽  
Vol 111 (4) ◽  
pp. 409-417 ◽  
Author(s):  
V. R. Capece ◽  
S. Fleeter

The fundamental flow physics of multistage blade row interactions are experimentally investigated at realistic reduced frequency values. Unique data are obtained that describe the fundamental unsteady aerodynamic interaction phenomena on the stator vanes of a three-stage axial flow research compressor. In these experiments, the effect on vane row unsteady aerodynamics of the following are investigated and quantified: (1) steady vane aerodynamic loading; (2) aerodynamic forcing function waveform, including both the chordwise and transverse gust components; (3) solidity; (4) potential interactions; and (5) isolated airfoil steady flow separation.


1993 ◽  
Vol 115 (2) ◽  
pp. 240-248 ◽  
Author(s):  
W. W. Copenhaver ◽  
C. Hah ◽  
S. L. Puterbaugh

A detailed aerodynamic study of a transonic, high-throughflow, single-stage compressor is presented. The compressor stage was comprised of a low-aspect-ratio rotor combined alternately with two different stator designs. Both experimental and numerical studies are conducted to understand the details of the complex flow field present in this stage. Aerodynamic measurements using high-frequency, Kulite pressure transducers and conventional probes are compared with results from a three-dimensional viscous flow analysis. A steady multiple blade row approach is used in the numerical technique to examine the detailed flow structure inside the rotor and the stator passages. The comparisons indicate that many flow field features are correctly captured by viscous flow analysis, and therefore unmeasured phenomena can be studied with some level of confidence.


1991 ◽  
Vol 113 (2) ◽  
pp. 312-319 ◽  
Author(s):  
S. R. Manwaring ◽  
S. Fleeter

A series of experiments are performed in an extensively instrumented axial flow research compressor to investigate the effects of different low reduced frequency aerodynamic forcing functions and steady loading level on the gust-generated unsteady aerodynamics of a first-stage rotor blade row. Two different two-per-rev forcing functions are considered: (1) the velocity deficit from two 90 deg circumferential inlet flow distortions, and (2) the wakes from two upstream obstructions, which are characteristic of airfoil or probe excitations. The data show that the wake-generated rotor row first harmonic response is much greater than that generated by the inlet distortion, with the difference decreasing with increased steady loading.


Sign in / Sign up

Export Citation Format

Share Document