Full-Coverage Film Cooling—Part I: Comparison of Heat Transfer Data for Three Injection Angles

1980 ◽  
Vol 102 (4) ◽  
pp. 1000-1005 ◽  
Author(s):  
M. E. Crawford ◽  
W. M. Kays ◽  
R. J. Moffat

Wind tunnel experiments were carried out at Stanford between 1971 and 1977 to study the heat transfer characteristics of full-coverage film cooled surfaces with three geometries: normal-, 30 deg slant-, and 30 deg × 45 deg compound-angled injection. A flat full-coverage section and downstream recovery section comprised the heat transfer system. The experimental objectives were to determine, for each geometry, the effects on surface heat flux of injection blowing ratio (M), injection temperature ratio (θ), and upstream initial conditions. Spanwise-averaged Stanton numbers were measured for blowing ratios from 0 to 1.3, and for two values of injection temperature at each blowing ratio. The heat transfer coefficient was defined on the basis of a mainstream-to-wall temperature difference. Initial momentum and enthalpy thickness Reynolds numbers were varied from 500 to about 3000. This paper compares the experimental results for the three injection geometries. In addition, the effects of hole spacing and number of rows of holes were examined.

1980 ◽  
Vol 102 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
M. E. Crawford ◽  
W. M. Kays ◽  
R. J. Moffat

Experimental research into heat transfer from full-coverage film-cooled surfaces with three injection geometries was described in Part I. This part has two objectives. The first is to present a simple numerical procedure for simulation of heat transfer with full-coverage film cooling. The second objective is to present some of the Stanton number data that was used in Part I of the paper. The data chosen for presentation are the low-Reynolds number, heated-starting-length data for the three injection geometries with five-diameter hole spacing. Sample data sets with high blowing ratio and with ten-diameter hole spacing are also presented. The numerical procedure has been successfully applied to the Stanton number data sets.


Author(s):  
Zhong Ren ◽  
Sneha Reddy Vanga ◽  
Nathan Rogers ◽  
Phil Ligrani ◽  
Keith Hollingsworth ◽  
...  

The present study provides new heat transfer data for both the surfaces of the full coverage effusion cooling plate within a double wall cooling test facility. To produce the cooling stream, a cold-side cross-flow supply for the effusion hole array is employed. Also utilized is a unique mainstream mesh heater, which provides transient thermal boundary conditions, after mainstream flow conditions are established. For the effusion cooled surface, presented are spatially-resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients (measured using infrared thermography). For the coolant side, presented are spatially-resolved distributions of surface Nusselt numbers (measured using liquid crystal thermography). Of interest are the effects of streamwise development, blowing ratio, and Reynolds number. Streamwise hole spacing and spanwise hole spacing (normalized by effusion hole diameter) on the effusion plate are 15 and 4, respectively. Effusion hole diameter is 6.35 mm, effusion hole angle is 25 degrees, and effusion plate thickness is 3 hole diameters. Considered are overall effusion blowing ratios from 2.9 to 7.5, with subsonic, incompressible flow, and constant freestream velocity with streamwise development, for two different mainstream Reynolds numbers. For the hot side (mainstream) of the effusion film cooling test plate, results for two mainflow Reynolds numbers of about 145000 and 96000 show that the adiabatic cooling effectiveness is generally higher for the lower Reynolds number for a particular streamwise location and blowing ratio. The heat transfer coefficient is generally higher for the low Reynolds number flow. This is due to altered supply passage flow behavior, which causes a reduction in coolant lift-off of the film from the surface as coolant momentum, relative to mainstream momentum, decreases. For the coolant side of the effusion test plate, Nusselt numbers generally increase with blowing ratio, when compared at a particular streamwise location and mainflow Reynolds number.


Author(s):  
Rui-dong Wang ◽  
Cun-liang Liu ◽  
Hai-yong Liu ◽  
Hui-ren Zhu ◽  
Qi-ling Guo ◽  
...  

Heat transfer of the counter-inclined cylindrical and laid-back holes with and without impingement on the turbine vane leading edge model are investigated in this paper. To obtain the film cooling effectiveness and heat transfer coefficient, transient temperature measurement technique on complete surface based on double thermochromic liquid crystals is used in this research. A semi-cylinder model is used to model the vane leading edge which is arranged with two rows of holes. Four test models are measured under four blowing ratios including cylindrical film holes with and without impingement tube structure, laid-back film holes with and without impingement tube structure. This is the second part of a two-part paper, the first part paper GT2018-76061 focuses on film cooling effectiveness and this study will focus on heat transfer. Contours of surface heat transfer coefficient and laterally averaged result are presented in this paper. The result shows that the heat transfer coefficient on the surface of the leading edge is enhanced with the increase of blowing ratio for same structure. The shape of the high heat transfer coefficient region gradually inclines to span-wise direction as the blowing ratio increases. Heat transfer coefficient in the region where the jet core flows through is relatively lower, while in the jet edge region the heat transfer coefficient is relatively higher. Compared with cylindrical hole, laid-back holes give higher heat transfer coefficient. Meanwhile, the introduction of impingement also makes heat transfer coefficient higher compared with cross flow air intake. It is found that the heat transfer of the combination of laid-back hole and impingement tube can be very high under large blowing ratio which should get attention in the design process.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Akira Murata ◽  
Satomi Nishida ◽  
Hiroshi Saito ◽  
Kaoru Iwamoto ◽  
Yoji Okita ◽  
...  

Cooling at the trailing edge of a gas turbine airfoil is one of the most difficult problems because of its thin shape, high thermal load from both surfaces, hard-to-cool geometry of narrow passages, and at the same time demand for structural strength. In this study, the heat transfer coefficient and film cooling effectiveness on the pressure-side cutback surface was measured by a transient infrared thermography method. Four different cutback geometries were examined: two smooth cutback surfaces with constant-width and converging lands (base and diffuser cases) and two roughened cutback surfaces with transverse ribs and spherical dimples. The Reynolds number of the main flow defined by the mean velocity and two times the channel height was 20,000, and the blowing ratio was varied among 0.5, 1.0, 1.5, and 2.0. The experimental results clearly showed spatial variation of the heat transfer coefficient and the film cooling effectiveness on the cutback and land top surfaces. The cutback surface results clearly showed periodically enhanced heat transfer due to the periodical surface geometry of ribs and dimples. Generally, the increase of the blowing ratio increased both the heat transfer coefficient and the film cooling effectiveness. Within the present experimental range, the dimple surface was a favorable cutback-surface geometry because it gave the enhanced heat transfer without deterioration of the high film cooling effectiveness.


Author(s):  
Austin Click ◽  
Phillip M. Ligrani ◽  
Maggie Hockensmith ◽  
Joseph Knox ◽  
Chandler Larson ◽  
...  

Abstract Within the present investigation, a louver slot is employed upstream of an array full coverage film cooling holes. Cooling air is supplied using a combination arrangement, with cross-flow and impingement together. The louver consists of a row of film cooling holes, contained within a specially-designed device which concentrates, and directs the coolant from a slot, so that it then advects as a layer downstream along the test surface. This louver-supplied coolant is then supplemented by coolant which emerges from different rows of downstream film cooling holes. The same coolant supply passage is employed for the louver row of holes, as well as for the film cooling holes, such that different louver and film cooling mass flow rates are set by different hole diameters for the two different types of cooling holes. The results are different from data provided by past investigations, because of the use and arrangement of the louver slot, and because of the unique coolant supply configurations. The experimental results are given for mainstream Reynolds numbers from 107000 to 114000. Full-coverage blowing ratios are constant with streamwise location along the test surface, and range from 3.68 to 5.70. Corresponding louver slot blowing ratios then range from 1.72 to 2.65. Provided are heat transfer coefficient and adiabatic effectiveness distributions, which are measured along the mainstream side of the test plate. Both types of data show less variation with streamwise development location, relative to results obtained without a louver employed, when examined at the same approximate effective blowing ratio, mainstream Reynolds number, cross flow Reynolds number, and impingement jet Reynolds number. When compared at the same effective blowing ratio or the same impingement jet Reynolds number, spanwise-averaged heat transfer coefficients are consistently lower, especially for the downstream regions of the test plate, when the louver is utilized. With the same type of comparisons, the presence of the louver slot results in significantly higher values of adiabatic film cooling effectiveness (spanwise-averaged), particularly at and near the upstream portions of the test plate. With such characteristics, dramatic increases in thermal protection are provided by the presence of the louver slot, the magnitudes of which vary with experimental condition and test surface location.


Author(s):  
Grady B. Kelly ◽  
David G. Bogard

An experimental study was conducted on the heat transfer to a film-cooled flat plate with a full coverage array of normal holes. The film cooling array consisted of ten staggered coolant rows, and each coolant hole had an L/D = 1.0 and an injection angle of α = 90°. Measurements of the heat transfer coefficient with and without film cooling were taken, in order to determine the increase in the heat transfer coefficient due to coolant injection. These experiments were conducted with heated and unheated starting lengths, and with low and high mainstream turbulence levels. The heat transfer coefficient ratios were used in conjunction with adiabatic effectiveness data taken in a previous study to determine the distributions of the overall heat load reduction. Heat transfer coefficient data from a single row of coolant holes were also taken. These data were used to evaluate several concepts for predicting full coverage heat transfer coefficient distributions based on the single row data.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
S. Xue ◽  
A. Newman ◽  
W. Ng ◽  
H. K. Moon ◽  
L. Zhang

An experimental study was performed to measure surface Nusselt number and film cooling effectiveness on a film cooled first stage nozzle guide vane (NGV) at high freestream turbulence, using a transient thin film gauge (TFG) technique. The information presented attempts to further characterize the performance of shaped hole film cooling by taking measurements on a row of shaped holes downstream of leading edge showerhead injection on both the pressure and suction surfaces (hereafter PS and SS) of a first stage NGV. Tests were performed at engine representative Mach and Reynolds numbers and high inlet turbulence intensity and large length scale at the Virginia Tech 2D Linear Transonic Cascade facility. Three exit Mach/Reynolds number conditions were tested: 1.0/1,400,000, 0.85/1,150,000, and 0.60/850,000 where Reynolds number is based on exit conditions and vane chord. At Mach/Reynolds numbers of 1.0/1,450,000 and 0.85/1,150,000, three blowing ratio conditions were tested: BR = 1.0, 1.5, and 2.0. At a Mach/Reynolds number of 0.60/850,000, two blowing ratio conditions were tested: BR = 1.5 and 2.0. All tests were performed at inlet turbulence intensity of 12% and length scale normalized by the cascade pitch of 0.28. Film cooling effectiveness and heat transfer results compared well with previously published data, showing a marked effectiveness improvement (up to 2.5×) over the showerhead-only NGV and also agreement with published showerhead-shaped hole data. Net heat flux reduction (NHFR) was shown to increase substantially (average 2.6 × ) with the addition of shaped holes with an increase (average 1.6×) in required coolant mass flow. Based on the heat flux data, the boundary layer transition location was shown to be within a consistent region on the suction side regardless of blowing ratio and exit Mach number.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 186
Author(s):  
Young Seo Kim ◽  
Jin Young Jeong ◽  
Jae Su Kwak ◽  
Heeyoon Chung

An experimental study was performed to investigate the effects of the arrangement of fan-shaped film cooling holes and density ratio (DR) on heat transfer coefficient augmentation. Both single- and multi-row fan-shaped film cooling holes were considered. For the multi-row fan-shaped holes, the heat transfer coefficient was measured at DRs of 1 and 2, and both staggered and inline arrangements of holes were considered. For the single-row fan-shaped holes, DR = 1.0, 1.5, 2.0, and 2.5 and M = 1.0 and 2.0 conditions were tested. The mainstream velocity was 20 m/s, and the turbulence intensity and boundary layer thickness were 3.6% and 6 mm, respectively. The heat transfer coefficient was measured using the one-dimensional transient infrared thermography method. The results show that an increased heat transfer coefficient augmentation is observed between film cooling holes for the case with a smaller hole pitch and higher blowing ratio. For the given fan-shaped hole parameters, the effects of the row-to-row distance and hole arrangement are not significant. In addition, as the velocity difference between the mainstream and coolant increases, the heat transfer coefficient ratio increases.


2021 ◽  
Vol 143 (3) ◽  
Author(s):  
Austin Click ◽  
Phillip M. Ligrani ◽  
Maggie Hockensmith ◽  
Joseph Knox ◽  
Chandler Larson ◽  
...  

Abstract Within the present investigation, a louver slot is employed upstream of an array full-coverage film cooling holes. Cooling air is supplied using a combination arrangement, with cross-flow and impingement together. The louver consists of a row of film cooling holes, contained within a specially designed device that concentrates and directs the coolant from a slot, so that it then advects as a layer downstream along the test surface. This louver-supplied coolant is then supplemented by coolant which emerges from different rows of downstream film cooling holes. The same coolant supply passage is employed for the louver row of holes, as well as for the film cooling holes, such that different louver and film cooling mass flowrates are set by different hole diameters for the two different types of cooling holes. The results are different from data provided by past investigations, because of the use and arrangement of the louver slot, and because of the unique coolant supply configurations. The experimental results are given for mainstream Reynolds numbers from 107,000 to 114,000. Full-coverage blowing ratios are constant with streamwise location along the test surface and range from 3.68 to 5.70. Corresponding louver slot blowing ratios then range from 1.72 to 2.65. Provided are heat transfer coefficient and adiabatic effectiveness distributions, which are measured along the mainstream side of the test plate. Both types of data show less variation with streamwise development location, relative to results obtained without a louver employed, when examined at the same approximate effective blowing ratio, mainstream Reynolds number, cross-flow Reynolds number, and impingement jet Reynolds number. When compared at the same effective blowing ratio or the same impingement jet Reynolds number, spanwise-averaged heat transfer coefficients are consistently lower, especially for the downstream regions of the test plate, when the louver is utilized. With the same type of comparisons, the presence of the louver slot results in significantly higher values of adiabatic film cooling effectiveness (spanwise-averaged), particularly at and near the upstream portions of the test plate. With such characteristics, dramatic increases in thermal protection are provided by the presence of the louver slot, the magnitudes of which vary with the experimental condition and test surface location.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Phil Ligrani ◽  
Matt Goodro ◽  
Mike Fox ◽  
Hee-Koo Moon

Experimental results are presented for a full-coverage film cooling arrangement which simulates a portion of a gas turbine engine, with appropriate streamwise static pressure gradient. The test surface utilizes varying blowing ratio (BR) along the length of the contraction passage which contains the cooling hole arrangement. For the different experimental conditions examined, film cooling holes are sharp-edged and streamwise inclined either at 20 deg or 30 deg with respect to the liner surface. The film cooling holes in adjacent streamwise rows are staggered with respect to each other. Data are provided for turbulent film cooling, contraction ratios of 1, 3, 4, and 5, blowing ratios (at the test section entrance) of 2.0, 5.0, and 10.0, coolant Reynolds numbers Refc of 10,000–12,000, freestream temperatures from 75 °C to 115 °C, a film hole diameter of 7 mm, and density ratios from 1.15 to 1.25. Nondimensional streamwise and spanwise film cooling hole spacings, X/D and Y/D, are 6, and 5, respectively. When the streamwise hole inclination angle is 20 deg spatially averaged and line-averaged adiabatic effectiveness values at each x/D location are about the same as the contraction ratio varies between 1, 3, and 4, with slightly higher values at each x/D location when the contraction ratio Cr is 5. For each contraction ratio, there is a slight increase in effectiveness when the blowing ratio is increased from 2.0 to 5.0 but there is no further substantial improvement when the blowing ratio is increased to 10.0. Overall, line-averaged and spatially averaged-adiabatic film effectiveness data, and spatially averaged heat transfer coefficient data are described as they are affected by contraction ratio, blowing ratio, hole angle α, and streamwise location x/D. For example, when α = 20 deg, the detrimental effects of mainstream acceleration are apparent since heat transfer coefficients for contraction ratios Cr of 3 and 5 are often higher than values for Cr = 1, especially for x/D > 100.


Sign in / Sign up

Export Citation Format

Share Document