effusion hole
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
S. Paccati ◽  
L. Mazzei ◽  
A. Andreini ◽  
B. Facchini

Abstract Effusion cooling represents the state-of-the-art for liner cooling technology in modern combustion chambers, combining a more uniform film protection of the wall and a significant heat sink effect by forced convection through a huge number of small holes. From a numerical point of view, a high computational cost is required in a conjugate CFD analysis of an entire combustor for a proper discretization of effusion holes in order to obtain accurate results in terms of liner temperature and effectiveness distributions. Consequently, simplified CFD approaches to model the various phenomena associated are required, especially during the design process. For this purpose, 2D boundary sources models are attractive, replacing the effusion hole with an inlet (hot side) and an outlet (cold side) patches to consider the related coolant injection. However, proper velocity profiles at the inlet patch together with the correct mass flow rate is mandatory to accurately predict the interaction and the mixing between coolant air and hot gases as well as temperature and effectiveness distributions on the liners. In this sense, reduced-order models techniques from the Machine Learning framework can be employed to derive a Surrogate Model (SM) for the prediction of these velocity profiles with a reduced computational cost, starting from a limited number of CFD simulations of a single effusion hole at different operating conditions. In this work, an application of these approaches will be presented to model the effusion system of a non-reactive single-sector linear combustor simulator equipped with a swirler and a multi-perforated plate, combining ANSYS Fluent with a MATLAB code. The employed Surrogate Model has been constructed on a training set of CFD simulations of the single effusion hole with operating conditions sampled in the model parameter space and subsequently assessed on a different validation set.



2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Nathan C. Huelsmann ◽  
Karen A. Thole

Abstract A common design for cooling the combustor liner of gas turbines is a double wall composed of impingement jets that feed effusion cooling holes. An important cooling mechanism associated with the effusion hole is the convective cooling provided to the liner wall, which is in contact with the hot main gas flowing through the combustor. While the combination of impingement jets and effusion holes has been studied earlier, mostly in terms of cooling effectiveness, investigators have not fully evaluated the effect the impingement jet has on the local internal convection within the effusion hole. This study evaluates the detailed effects of the impingement geometry on the local convective heat transfer coefficients within the effusion hole, which provides insights as to the design decisions for cooling combustor liners. Using a scaled-up, 3D-printed effusion hole with a constant heat flux boundary condition, local convective heat transfer coefficients were measured for a range of impingement geometries and positions relative to the effusion holes. Results showed a strong influence on the convective heat transfer resulting from the placement of the impingement hole relative to the effusion hole. In particular, the results showed a strong sensitivity to the circumferential and radial placement of the impingement jet with little sensitivity to the jet-to-effusion distance.



Author(s):  
Nathan C. Huelsmann ◽  
Karen A. Thole

Abstract A common design for cooling the combustor liner of gas turbines is a double-wall composed of impingement jets that feed effusion cooling holes. An important cooling mechanism associated with the effusion hole is the convective cooling provided to the liner wall, which is in contact with the hot main gas flowing through the combustor. While the combination of impingement jets and effusion holes have been studied before, mostly in terms of cooling effectiveness, investigators have not fully evaluated the effect the impingement jet has on the local internal convection within the effusion hole. This study evaluates the detailed effects of the impingement geometry on the local convective heat transfer coefficients within the effusion hole, which provides insights as to the design decisions for cooling combustor liners. Using a scaled-up, 3D-printed effusion hole with a constant heat flux boundary condition, local convective heat transfer coefficients were measured for a range of impingement geometries and positions relative to the effusion holes. Results showed a strong influence on the convective heat transfer resulting from the placement of the impingement hole relative to the effusion hole. In particular, the results showed a strong sensitivity to circumferential and radial placement of the impingement jet with little sensitivity to the jet-to-effusion distance.





Author(s):  
Evan D. Crowe ◽  
Jeffrey P. Bons

Abstract In this study the effects of dust composition on particle deposition in an effusion cooling geometry were investigated through a series of experiments. Single mineral dusts made from five different minerals, Quartz, Dolomite, Albite, Salt, and Gypsum, were milled to similar size distributions (approx. 0–10μm diameter). These dusts were then used in particle deposition tests on a flat plate effusion hole test article which was heated in a kiln to 1116K and supplied with coolant flow heated to 950K. Percent mass flow reduction per gram and deposit morphology were recorded for each test. Results for the different minerals varied greatly ranging from 7.8% to 160% reduction in mass flow per gram injected, with the albite dust producing the greatest blockage. The different dusts also produced varying shapes of deposits. These five dusts were then combined to form a dust blend with the same mass fractions found in AFRL02, a commercially available test dust, and additional tests were conducted using this dust. Results from the tests using the OSU mixed AFRL02 were compared with an estimated blockage per gram found by taking a weighted average of the blockage per gram for each single mineral dust on a percent volume basis. When tested, the mixed AFRL02 produced a lower blockage per gram than the estimate, indicating that an estimate based on volume fraction alone is not sufficient to predict the deposition of dusts composed of a mixture of minerals.



2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Sneha Reddy Vanga ◽  
David Ritchie ◽  
Austin Click ◽  
Zhong Ren ◽  
Phil Ligrani ◽  
...  

The present study provides new effusion cooling data for both the surfaces of the full-coverage effusion cooling plate. For the effusion-cooled surface, presented are spatially resolved distributions of surface adiabatic film cooling effectiveness and surface heat transfer coefficients (measured using transient techniques and infrared thermography). For the impingement-cooled surface, presented are spatially resolved distributions of surface Nusselt numbers (measured using steady-state liquid crystal thermography). To produce this cool-side augmentation, impingement jet arrays at different jet Reynolds numbers, from 2720 to 11,100, are employed. Experimental data are given for a sparse effusion hole array, with spanwise and streamwise impingement hole spacing such that coolant jet hole centerlines are located midway between individual effusion hole entrances. Considered are the initial effusion blowing ratios from 3.3 to 7.5, with subsonic, incompressible flow. The velocity of the freestream flow which is adjacent to the effusion-cooled boundary layer is increasing with streamwise distance, due to a favorable streamwise pressure gradient. Such variations are provided by a main flow passage contraction ratio CR of 4. Of particular interest are effects of impingement jet Reynolds number, effusion blowing ratio, and streamwise development. Also, included are comparisons of impingement jet array cooling results with: (i) results associated with crossflow supply cooling with CR = 1 and CR = 4 and (ii) results associated with impingement supply cooling with CR = 1, when the mainstream pressure gradient is near zero. Overall, the present results show that, for the same main flow Reynolds number, approximate initial blowing ratio, and streamwise location, significantly increased thermal protection is generally provided when the effusion coolant is provided by an array of impingement cooling jets, compared to a crossflow coolant supply.



Author(s):  
Adam C. Shrager ◽  
Karen A. Thole ◽  
Dominic Mongillo

The complex flow field in a gas turbine combustor makes cooling the liner walls a challenge. In particular, this paper is primarily focused on the region surrounding the dilution holes, which is especially challenging to cool due to the interaction between the effusion cooling jets and high-momentum dilution jets. This study presents overall effectiveness measurements for three different cooling hole patterns of a double-walled combustor liner. Only effusion hole patterns near the dilution holes were varied, which included: no effusion cooling; effusion holes pointed radially outward from the dilution hole; and effusion holes pointed radially inward toward the dilution hole. The double-walled liner contained both impingement and effusion plates as well as a row of dilution jets. Infrared thermography was used to measure the surface temperature of the combustor liners at multiple dilution jet momentum flux ratios and approaching freestream turbulence intensities of 0.5% and 13%. Results showed that the outward and inward geometries were able to more effectively cool the region surrounding the dilution hole compared to the closed case. A significant amount of the cooling enhancement in the outward and inward cases came from in-hole convection. Downstream of the dilution hole, the interactions between the inward effusion holes and the dilution jet led to lower levels of effectiveness compared to the other two geometries. High freestream turbulence caused a small decrease in overall effectiveness over the entire liner and was most impactful in the first three rows of effusion holes.



Author(s):  
Adam C. Shrager ◽  
Karen A. Thole ◽  
Dominic Mongillo

The complex flowfield in a gas turbine combustor makes cooling the liner walls a challenge. In particular, this paper is primarily focused on the region surrounding the dilution holes, which is especially challenging to cool due to the interaction between the effusion cooling jets and high-momentum dilution jets. This study presents overall effectiveness measurements for three different cooling hole patterns of a double-walled combustor liner. Only effusion hole patterns near the dilution holes were varied, which included: no effusion cooling; effusion holes pointed radially outward from the dilution hole; and effusion holes pointed radially inward toward the dilution hole. The double-walled liner contained both impingement and effusion plates as well as a row of dilution jets. Infrared thermography was used to measure the surface temperature of the combustor liners at multiple dilution jet momentum flux ratios and approaching freestream turbulence intensities of 0.5% and 13%. Results showed the outward and inward geometries were able to more effectively cool the region surrounding the dilution hole compared to the closed case. A significant amount of the cooling enhancement in the outward and inward cases came from in-hole convection. Downstream of the dilution hole, the interactions between the inward effusion holes and the dilution jet led to lower levels of effectiveness compared to the other two geometries. High freestream turbulence caused a small decrease in overall effectiveness over the entire liner and was most impactful in the first three rows of effusion holes.



Author(s):  
Sneha Reddy Vanga ◽  
Zhong Ren ◽  
Austin J. Click ◽  
Phil Ligrani ◽  
Federico Liberatore ◽  
...  

The present study provides new effusion cooling data for both surfaces of full coverage effusion cooling plate. For the effusion cooled surface, presented are spatially-resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients (measured using transient techniques and infrared thermography). For the impingement cooled surface, presented are spatially-resolved distributions of surface Nusselt numbers (measured using steady-state liquid crystal thermography). To produce this cool side augmentation, impingement jet arrays at different jet Reynolds numbers, from 2720 to 11100, are employed. Experimental data are given for a sparse effusion hole array, with spanwise and streamwise impingement hole spacing such that coolant jet hole centerlines are located midway between individual effusion hole entrances. Considered are initial effusion blowing ratios from 3.3 to 7.5, with subsonic, incompressible flow. The velocity of the freestream flow which is adjacent to the effusion cooled boundary layer is increasing with streamwise distance, due to a favorable streamwise pressure gradient. Such variations are provided by a main flow passage contraction ratio CR of 4. Of particular interest are effects of impingement jet Reynolds number, effusion blowing ratio, and streamwise development. Also included are comparisons of impingement jet array cooling results with: (i) results associated with cross flow supply cooling with CR = 1 and CR = 4, and (ii) results associated with impingement supply cooling with CR = 1, when the mainstream pressure gradient is near zero. Overall, the present results show that, for the same main flow Reynolds number, approximate initial blowing ratio, and streamwise location, significantly increased thermal protection is generally provided when the effusion coolant is provided by an array of impingement cooling jets, compared to a cross flow coolant supply.



Sign in / Sign up

Export Citation Format

Share Document