Limitations of the Boundary-Layer Equations for Predicting Laminar Symmetric Sudden Expansion Flows

1986 ◽  
Vol 108 (2) ◽  
pp. 208-213 ◽  
Author(s):  
J. P. Lewis ◽  
R. H. Pletcher

A finite-difference solution scheme is used to study the limitations and capabilities of the boundary-layer equation model for flow through abrupt, symmetric expansions. Solutions of the boundary-layer equations are compared with previous numerical predictions and experimental measurements. Some flow parameters are not well predicted for Reynolds numbers below 200. Global iteration over the flow field to include upstream effects does not significantly influence the predictions. Axisymmetric and two-dimensional flows are investigated. The effect of initial conditions is discussed

2015 ◽  
Vol 783 ◽  
pp. 379-411 ◽  
Author(s):  
I. Marusic ◽  
K. A. Chauhan ◽  
V. Kulandaivelu ◽  
N. Hutchins

In this paper we study the spatial evolution of zero-pressure-gradient (ZPG) turbulent boundary layers from their origin to a canonical high-Reynolds-number state. A prime motivation is to better understand under what conditions reliable scaling behaviour comparisons can be made between different experimental studies at matched local Reynolds numbers. This is achieved here through detailed streamwise velocity measurements using hot wires in the large University of Melbourne wind tunnel. By keeping the unit Reynolds number constant, the flow conditioning, contraction and trip can be considered unaltered for a given boundary layer’s development and hence its evolution can be studied in isolation from the influence of inflow conditions by moving to different streamwise locations. Careful attention was given to the experimental design in order to make comparisons between flows with three different trips while keeping all other parameters nominally constant, including keeping the measurement sensor size nominally fixed in viscous wall units. The three trips consist of a standard trip and two deliberately ‘over-tripped’ cases, where the initial boundary layers are over-stimulated with additional large-scale energy. Comparisons of the mean flow, normal Reynolds stress, spectra and higher-order turbulence statistics reveal that the effects of the trip are seen to be significant, with the remnants of the ‘over-tripped’ conditions persisting at least until streamwise stations corresponding to $Re_{x}=1.7\times 10^{7}$ and $x=O(2000)$ trip heights are reached (which is specific to the trips used here), at which position the non-canonical boundary layers exhibit a weak memory of their initial conditions at the largest scales $O(10{\it\delta})$, where ${\it\delta}$ is the boundary layer thickness. At closer streamwise stations, no one-to-one correspondence is observed between the local Reynolds numbers ($Re_{{\it\tau}}$, $Re_{{\it\theta}}$ or $Re_{x}$ etc.), and these differences are likely to be the cause of disparities between previous studies where a given Reynolds number is matched but without account of the trip conditions and the actual evolution of the boundary layer. In previous literature such variations have commonly been referred to as low-Reynolds-number effects, while here we show that it is more likely that these differences are due to an evolution effect resulting from the initial conditions set up by the trip and/or the initial inflow conditions. Generally, the mean velocity profiles were found to approach a constant wake parameter ${\it\Pi}$ as the three boundary layers developed along the test section, and agreement of the mean flow parameters was found to coincide with the location where other statistics also converged, including higher-order moments up to tenth order. This result therefore implies that it may be sufficient to document the mean flow parameters alone in order to ascertain whether the ZPG flow, as described by the streamwise velocity statistics, has reached a canonical state, and a computational approach is outlined to do this. The computational scheme is shown to agree well with available experimental data.


1984 ◽  
Vol 138 ◽  
pp. 297-323 ◽  
Author(s):  
Mohamed Gad-El-Hak ◽  
Stephen H. Davis ◽  
J. Thomas Mcmurray ◽  
Steven A. Orszag

The stability of a decelerating boundary-layer flow is investigated experimentally and numerically. Experimentally, a flat plate having a Blasius boundary layer is decelerated in an 18 m towing tank. The boundary layer becomes unstable to two-dimensional waves, which break down into three-dimensional patterns, hairpin vortices, and finally turbulent bursts when the vortices lift off the wall. The unsteady boundary-layer equations are solved numerically to generate instantaneous velocity profiles for a range of boundary and initial conditions. A quasi-steady approximation is invoked and the stability of local velocity profiles is determined by solving the Orr–Sommerfeld equation using Chebyshev matrix methods. Comparisons are made between the numerical predictions and the experimentally observed instabilities.


In streamlined flow past a flat plate aligned with a uniform stream, it is shown that ( a ) the Goldstein near-wake and ( b ) the Blasius boundary layer are non-unique solutions locally for the classical boundary layer equations, whereas ( c ) the Rott-Hakkinen very-near-wake appears to be unique. In each of ( a ) and ( b ) an alternative solution exists, which has reversed flow and which apparently cannot be discounted on immediate grounds. So, depending mainly on how the alternatives for ( a ), ( b ) develop downstream, the symmetric flow at high Reynolds numbers could have two, four or more steady forms. Concerning non-streamlined flow, for example past a bluff obstacle, new similarity forms are described for the pressure-free viscous symmetric closure of a predominantly slender long wake beyond a large-scale separation. Features arising include non-uniqueness, singularities and algebraic behaviour, consistent with non-entraining shear layers with algebraic decay. Non-uniqueness also seems possible in reattachment onto a solid surface and for non-symmetric or pressure-controlled flows including the wake of a symmetric cascade.


1969 ◽  
Vol 91 (4) ◽  
pp. 632-648 ◽  
Author(s):  
T. K. Fannelop ◽  
P. C. Smith

A theoretical analysis is presented for three-dimensional laminar boundary-layer flow about slender conical vehicles including the effect of transverse surface curvature. The boundary-layer equations are solved by standard finite difference techniques. Numerical results are presented for hypersonic flow about a slender blunted cone. The influences of Reynolds number, cone angle, and mass transfer are studied for both symmetric flight and at angle-of-attack. The effects of transverse curvature are substantial at the low Reynolds numbers considered and are enhanced by blowing. The crossflow wall shear is largely unaffected by transverse curvature although the peak velocity is reduced. A simplified “channel flow” analogy is suggested for the crossflow near the wall.


1996 ◽  
Vol 324 ◽  
pp. 355-377 ◽  
Author(s):  
F. T. Smith ◽  
S. N. Timoshin

Two-dimensional steady laminar flows past multiple thin blades positioned in near or exact sequence are examined for large Reynolds numbers. Symmetric configurations require solution of the boundary-layer equations alone, in parabolic fashion, over the successive blades. Non-symmetric configurations in contrast yield a new global inner–outer interaction in which the boundary layers, the wakes and the potential flow outside have to be determined together, to satisfy pressure-continuity conditions along each successive gap or wake. A robust computational scheme is used to obtain numerical solutions in direct or design mode, followed by analysis. Among other extremes, many-blade analysis shows a double viscous structure downstream with two streamwise length scales operating there. Lift and drag are also considered. Another new global interaction is found further downstream. All the interactions involved seem peculiar to multi-blade flows.


1992 ◽  
Vol 114 (4) ◽  
pp. 504-511 ◽  
Author(s):  
J. A. Schetz ◽  
E. Hytopoulos ◽  
M. Gunzburger

A new approach to the solution of the two-dimensional, incompressible, boundary-layer equations based on the Finite Element Method in both directions is investigated. Earlier Finite Element Method treatments of parabolic boundary-layer problems used finite differences in the streamwise direction, thus sacrificing some of the possible advantages of the Finite Element Method. The accuracy and computational efficiency of different interpolation functions for the velocity field are evaluated. A new element especially designed for boundary layer flows is introduced. The effect that the treatment of the continuity equation has on the stability and accuracy of the numerical results is also discussed. The parabolic nature of the equations is exploited in order to reduce the memory requirements. The solution is obtained for one line at a time, thus only two levels are required to be stored at any time. Efficient solvers for tridiagonal and pentadiagonal forms are used for solving the resulting matrix problem. Numerical predictions are compared to analytical and experimental results for laminar and turbulent flows, with and without pressure gradients. The comparisons show very good agreement. Although most of the cases were tested on a mainframe, the low requirements in CPU time and memory storage allows the implementation of the method on a conventional PC.


The three-dimensional pipeflow boundary layer equations of Smith (1976) are shown to apply to certain external flow problems, and a numerical method for their solution is developed. The method is used to study flow over surface irregularities, and some three-dimensional separated flows are calculated. Upstream influence in the form of so-called ‘free interactions’ requires an iterative solution technique, in which the initial conditions for the parabolic boundary layer equations must be determined to satisfy a downstream condition


2013 ◽  
Vol 18 (3) ◽  
pp. 955-964 ◽  
Author(s):  
P.G. Siddheshwar ◽  
U.S. Mahabaleswar ◽  
H.I. Andersson

Abstract The paper discusses a new analytical procedure for solving the non-linear boundary layer equation arising in a linear stretching sheet problem involving a Newtonian/non-Newtonian liquid. On using a technique akin to perturbation the problem gives rise to a system of non-linear governing differential equations that are solved exactly. An analytical expression is obtained for the stream function and velocity as a function of the stretching parameters. The Clairaut equation is obtained on consideration of consistency and its solution is shown to be that of the stretching sheet boundary layer equation. The present study throws light on the analytical solution of a class of boundary layer equations arising in the stretching sheet problem


1967 ◽  
Vol 27 (4) ◽  
pp. 779-788 ◽  
Author(s):  
K. E. Barrett

The velocity field generated in a fluid of viscosity, v, by impulsively starting at time t = 0, a sphere of radius a spinning with angular velocity Ω about a diameter is described using a new expansion variable 2 √vt/r. It is first shown how the standard time-dependent boundary-layer equations can be modified to give series solutions satisfying all the boundary conditions. Next, that these new solutions are relevant when the Reynolds number R = a2Ω/v goes to infinity in such a way that $R^{\frac{1}{3}} \Omega t$ is large. Lastly, solutions are given, applicable at small times for non-zero Reynolds numbers. These last expansions show that the velocity components decay algebraically rather than exponentially at large distances.


Sign in / Sign up

Export Citation Format

Share Document