An Experimental Determination of the Thermal Conductivity of a 304L Stainless Steel Powder Metallurgy Material

1989 ◽  
Vol 111 (2) ◽  
pp. 281-286 ◽  
Author(s):  
J. S. Agapiou ◽  
M. F. DeVries

The thermal conductivity of a 304L stainless steel powder metallurgy (P/M) material was experimentally determined to support research aimed at understanding the poor machining characteristics of P/M austenitic stainless steels. Thermal conductivity measurements were made on samples having relative densities ranging between 64 and 90 percent of theoretical density since workpieces requiring machining are often fabricated in that density range. The measurements were also made over a temperature range of 50 to 300°C since workpiece temperatures can attain levels this high during the machining operation. The thermal conductivity was measured using an apparatus having a design based on the comparative method. The experimentally determined thermal conductivities were modeled by mathematical models found in the technical literature and modified for the present study. The thermal conductivity of this material increases with increasing relative density and temperature; it is also dependent on the matrix structure for a given porosity.

2020 ◽  
Vol 31 ◽  
pp. 100904 ◽  
Author(s):  
Austin T. Sutton ◽  
Caitlin S. Kriewall ◽  
Ming C. Leu ◽  
Joseph W. Newkirk ◽  
Ben Brown

2000 ◽  
Vol 625 ◽  
Author(s):  
John A. Brooks ◽  
Thomas J. Headley ◽  
Charles V. Robino

AbstractLaser deposits fabricated from two different compositions of 304L stainless steel powder were characterized to determine the nature of the solidification and solid state transformations. One of the goals of this work was to determine to what extent novel microstructures consisting of single-phase austenite could be achieved with the thermal conditions of the LENS process. Although ferrite-free deposits were not obtained, structures with very low ferrite content were achieved. It appeared that, with slight changes in alloy composition, this goal could be met via two different solidification and transformation mechanisms.


2020 ◽  
Vol 32 ◽  
pp. 100981 ◽  
Author(s):  
Austin T. Sutton ◽  
Caitlin S. Kriewall ◽  
Sreekar Karnati ◽  
Ming C. Leu ◽  
Joseph W. Newkirk

Sign in / Sign up

Export Citation Format

Share Document