Linear Force Coefficients for Squeeze-Film Dampers

1983 ◽  
Vol 105 (3) ◽  
pp. 326-334 ◽  
Author(s):  
A. Z. Szeri ◽  
A. A. Raimondi ◽  
A. Giron-Duarte

This paper presents a simplifed analysis of viscous squeeze-film damper behavior. It makes use of the notation of averaged inertia and calculates linear velocity and inertia coeffcients. These coefficients are shown to be accurate at practical values of the length/diameter ratio and the gap Reynolds number of the viscous damper.

1992 ◽  
Vol 114 (4) ◽  
pp. 659-664 ◽  
Author(s):  
Luis A. San Andres

A novel analysis for the dynamic force response of a squeeze film damper with a central feeding groove considers the dynamic flow interaction between the squeeze film lands and the feeding groove. For small amplitude centered motions and based on the short bearing model, corrected values for the damping and inertia force coefficients are determined. Correlations with existing experimental evidence is excellent. Analytical results show that the grooved-damper behaves at low frequencies as a single land damper. Dynamic force coefficients are determined to be frequency dependent. Analytical predictions show that the combined action of fluid inertia and groove volume—liquid compressibility affects the force coefficients for dynamic excitation at large frequencies.


2008 ◽  
Vol 15 (6) ◽  
pp. 631-637 ◽  
Author(s):  
Waleed F. Faris ◽  
Asad A. Khalid ◽  
A. Albagul ◽  
Godem A. Ismail

This work is devoted to the fabrication and investigation of the Squeeze Film Dampers (SFDs) which are widely used in many applications. This include the fabrication of a test rig and several dampers with different sizes and two different materials which composite and non-composite. Composite dampers (Glass/epoxy), each consists of 30 layers, were fabricated by hand lay-up method. Outer and inner diameters of all the fabricated dampers were maintained as 60 and 40 mm respectively. Non-composite dampers (Steel) were fabricated and tested using turning machine. Three dampers of different lengths were examined for both materials. A rotor-bearing system for the analysis has been designed and fabricated. The test rig consists of mild steel shaft, two supports, oil pressure system, and two self-alignment ball bearings were fixed on each end support. Two squeeze film dampers were used for the two support ends. Vibration amplitude has been examined for all the fabricated dampers at different shaft rotational speeds. The first resonance speed was examined for all the dampers tested. Results show that the vibration amplitude of the steel damper was lower than Glass/epoxy dampers with the same L/D ratio. On the other hand, a considerable weight saving has been achieved by using Glass/epoxy composite dampers. It has been found that the performance of squeeze film damper improved with increasing length/diameter ratio (L/D) within the range tested.


2019 ◽  
Vol 254 ◽  
pp. 08005 ◽  
Author(s):  
Petr Ferfecki ◽  
Jaroslav Zapoměl ◽  
Marek Gebauer ◽  
Václav Polreich ◽  
Jiří Křenek

Rotor vibration attenuation is achieved with damping devices which work on different, often mutually coupled, physical principles. Squeeze film dampers are damping devices that have been widely used in rotordynamic applications. A new concept of a 5-segmented integral squeeze film damper, in which a flexure pivot tilting pad journal bearing is integrated, was investigated. The damper is studied for the eccentric position between the outer and inner ring of the squeeze film land. The ANSYS CFX software was used for solving the pressure and velocity distribution. The development of the complex three-dimensional computational fluid dynamics model of the squeeze film damper, learning more about the effect of the forces in the damper, and the knowledge about the behaviour of the flow are the principal contributions of this article.


Author(s):  
J. W. Lund ◽  
A. J. Smalley ◽  
J. A. Tecza ◽  
J. F. Walton

Squeeze-film dampers are commonly used in gas turbine engines and have been applied successfully in a great many new designs, and also as retrofits to older engines. Of the mechanical components in gas turbines, squeeze-film dampers are the least understood. Their behavior is nonlinear and strongly coupled to the dynamics of the rotor systems on which they are installed. The design of these dampers is still largely empirical, although they have been the subject of a large number of past investigations. To describe recent analytical and experimental work in squeeze-film damper technology, two papers are planned. This abstract outlines the first paper, Part 1, which concerns itself with squeeze-film damper analysis. This paper will describe an analysis method and boundary conditions which have been developed recently for modelling dampers, and in particular, will cover the treatment of finite length, feed and drain holes and fluid inertia effects, the latter having been shown recently to be of great importance in predicting rotor system behavior. A computer program that solves the Reynolds equation for the above conditions will be described and sample calculation results presented.


Author(s):  
Zenglin Guo ◽  
Toshio Hirano ◽  
R. Gordon Kirk

The traditional method for bearing and damper analysis usually involves a development of rather complicated numerical calculation programs that may just focus on a simplified and specific physical model. The application of the general CFD codes may make this analysis available and effective where complex flow geometries are involved or when more detailed solutions are needed. In this study, CFX-TASCflow is employed to simulate various fixed geometry fluid-film bearing and damper designs. Some of the capabilities in CFX-TASCflow are applied to simulate the pressure field and calculate the static and dynamic characteristics of hydrodynamic, hydrostatic and hybrid bearings as well as squeeze film dampers. The comparison between the CFD analysis and current computer programs used in industry has been made. The results show reasonable agreement in general. Some of possible reasons for the differences are discussed. It leaves room for further investigation and improvement on the methods of computation.


Author(s):  
Luis San Andrés

Aircraft engine rotors are particularly sensitive to rotor imbalance and sudden maneuver loads, since they are always supported on rolling element bearings with little damping. Most engines incorporate squeeze film dampers (SFDs) as means to dissipate mechanical energy from rotor vibrations and to ensure system stability. The paper quantifies experimentally the forced performance of a SFD comprising two parallel film lands separated by a deep central groove. Tests are conducted on two open ends SFDs, both with diameter D = 127 mm and nominal radial clearance c = 0.127 mm. One damper has film lands with length L = 12.7 mm (short length), while the other has 25.4 mm land lengths. The central groove has width L and depth 3/4 L. A light viscosity lubricant flows into the central groove via three orifices, 120 deg apart and then through the film lands to finally exit to ambient. In operation, a static loader pulls the bearing to various eccentric positions and electromagnetic shakers excite the test system with periodic loads to generate whirl orbits of specific amplitudes. A frequency domain method identifies the SFD damping and inertia force coefficients. The long damper generates six times more damping and about three times more added mass than the short length damper. The damping coefficients are sensitive to the static eccentricity (up to ∼ 0.5 c), while showing lesser dependency on the amplitude of whirl motion (up to 0.2 c). On the other hand, inertia coefficients increase mildly with static eccentricity and decrease as the amplitude of whirl motion increases. Cross-coupled force coefficients are insignificant for all imposed operating conditions on either damper. Large dynamic pressures recorded in the central groove demonstrate the groove does not isolate the adjacent squeeze film lands, but contributes to the amplification of the film lands’ reaction forces. Predictions from a novel SFD model that includes flow interactions in the central groove and feed orifices agree well with the test force coefficients for both dampers. The test data and predictions advance current knowledge and demonstrate that SFD-forced performance is tied to the lubricant feed arrangement.


Sign in / Sign up

Export Citation Format

Share Document