On the Effect of the Gap of End Seals on Force Coefficients of a Test Integral Squeeze Film Damper: Experiments and Predictions

2021 ◽  
Author(s):  
Xueliang Lu ◽  
Luis San Andres ◽  
Bonjin Koo ◽  
Scott Tran
2004 ◽  
Vol 126 (2) ◽  
pp. 292-300 ◽  
Author(s):  
Luis San Andre´s ◽  
Oscar De Santiago

Experimentally derived damping and inertia force coefficients from a test squeeze film damper for various dynamic load conditions are reported. Shakers exert single frequency loads and induce circular and elliptical orbits of increasing amplitudes. Measurements of the applied loads, bearing displacements and accelerations permit the identification of force coefficients for operation at three whirl frequencies (40, 50, and 60 Hz) and increasing lubricant temperatures. Measurements of film pressures reveal an early onset of air ingestion. Identified damping force coefficients agree well with predictions based on the short length bearing model only if an effective damper length is used. A published two-phase flow model for air entrainment allows the prediction of the effective damper length, and which ranges from 82% to 78% of the damper physical length as the whirl excitation frequency increases. Justifications for the effective length or reduced (flow) viscosity follow from the small through flow rate, not large enough to offset the dynamic volume changes. The measurements and analysis thus show the pervasiveness of air entrainment, whose effect increases with the amplitude and frequency of the dynamic journal motions. Identified inertia coefficients are approximately twice as large as those derived from classical theory.


Author(s):  
J X Zhang ◽  
J B Roberts

The fluid force generated in a squeeze film damper undergoing large amplitude radial motion is described in terms of non-linear hydrodynamic inertial and damping coefficients, together with afluid static force. Linear-in-the-parameter polynomial forms are introduced to represent the variation of these contributions with radial position. A generalized state variable filter identification method is developed which enables all the parameters in the non-linear model to be estimated from experimental data. The method is validated by processing simulated data and then applied to some new experimental data. Experimental results, relating to the influence of the supply pressure and the operating frequency on the coefficients, are presented and discussed. Comparisons are made with corresponding predictions derived from existing lubrication theory. The parametric non-linear model is found to give a good fit to experimental data over a significant region within the vicinity of the initial static equilibrium position. Through a combination of results, the variation of the fluid force coefficients and the fluid static force with eccentricity, over nearly the whole range of the radial clearance, is obtained. Temporal inertia is found to be more important than convective inertia for motion near the centre of the clearance circle. The existence of a fluid static force, suggested by previous work is confirmed. It is found that this force is linearly proportional to the oil supply pressure.


Author(s):  
Luis San Andrés ◽  
Adolfo Delgado

The paper presents parameter identification measurements conducted on a squeeze film damper (SFD) featuring a nonrotating mechanical seal that effectively eliminates lubricant side leakage. The SFD-seal arrangement generates dissipative forces due to viscous and dry-friction effects from the lubricant film and surfaces in contact, respectively. The test damper reproduces an aircraft application that must contain the lubricant for extended periods of time. The test damper journal is 2.54cm in length and 12.7cm in diameter, with a nominal clearance of 0.127mm. The damper feed end opens to a plenum filled with lubricant, and at its discharge grooved section, four orifice ports evacuate the lubricant. In earlier publications, single frequency force excitation tests were conducted, without and with lubricant in the squeeze film land, to determine the seal dry-friction force and viscous damping force coefficients. Presently, further measurements are conducted to identify the test system and SFD force coefficients using two sets of flow restrictor orifice sizes (2.8mm and 1.1mm in diameter). The flow restrictors regulate the discharge flow area and thus control the oil flow through the squeeze film. The experiments also include measurements of dynamic pressures at the squeeze film land and at the discharge groove. The magnitude of dynamic pressure in the squeeze film land is nearly identical for both sets of flow restrictors, and for small orbit radii, dynamic pressures in the discharge groove have peak values similar to those in the squeeze film land. The identified parameters include the test system damping and the individual contributions from the squeeze film, dry friction in the mechanical seal and structure remnant damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry-friction interaction at the mechanical seal interface. Squeeze film force coefficients, damping and added mass, are in agreement with simple predictive formulas for an uncavitated lubricant condition and are similar for both flow restrictor sizes. The SFD-mechanical seal arrangement effectively prevents air ingestion and entrapment and generates predicable force coefficients for the range of frequencies tested.


Author(s):  
Luis San Andre´s ◽  
Adolfo Delgado

The paper presents parameter identification measurements conducted on a squeeze film damper (SFD) featuring a non-rotating mechanical seal that effectively eliminates lubricant side leakage. The SFD-seal arrangement generates dissipative forces due to viscous and dry-friction effects from the lubricant film and surfaces in contact, respectively. The test damper reproduces an aircraft application that must contain the lubricant for extended periods of time. The test damper journal is 2.54 cm in length and 12.7 cm in diameter, with a nominal clearance of 0.127 mm. The damper feed end opens to a plenum filled with lubricant, and at its discharge grooved section, four orifice ports evacuate the lubricant. In prior publications (ASME Paper GT2006-90782, IJTC2006-12041), single frequency force excitation tests were conducted, without and with lubricant in the squeeze film land, to determine the seal dry-friction force and viscous damping force coefficients. Presently, further measurements are conducted to identify the test system and SFD force coefficients using two sets of flow restrictor orifice sizes (2.8 mm and 1.1 mm in diameter). The flow restrictors regulate the discharge flow area, and thus control the oil flow through the squeeze film. The experiments also include measurements of dynamic pressures at the squeeze film land and at the discharge groove. The magnitude of dynamic pressure in the squeeze film land is nearly identical for both sets of flow restrictors, and for small orbit radii, dynamic pressures in the discharge groove have peak values similar to those in the squeeze film land. The identified parameters include the test system damping and the individual contributions from the squeeze film, dry friction in the mechanical seal and structure remnant damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry friction interaction at the mechanical seal interface. Squeeze film force coefficients, damping and added mass, are in agreement with simple predictive formulas for an uncavitated lubricant condition and are similar for both flow restrictor sizes. The SFD-mechanical seal arrangement effectively prevents air ingestion and entrapment and generates predicable force coefficients for the range of frequencies tested.


1992 ◽  
Vol 114 (4) ◽  
pp. 659-664 ◽  
Author(s):  
Luis A. San Andres

A novel analysis for the dynamic force response of a squeeze film damper with a central feeding groove considers the dynamic flow interaction between the squeeze film lands and the feeding groove. For small amplitude centered motions and based on the short bearing model, corrected values for the damping and inertia force coefficients are determined. Correlations with existing experimental evidence is excellent. Analytical results show that the grooved-damper behaves at low frequencies as a single land damper. Dynamic force coefficients are determined to be frequency dependent. Analytical predictions show that the combined action of fluid inertia and groove volume—liquid compressibility affects the force coefficients for dynamic excitation at large frequencies.


2019 ◽  
Vol 71 (10) ◽  
pp. 1144-1151
Author(s):  
Zhenlin Wang ◽  
Zhansheng Liu ◽  
Guanghui Zhang

Purpose The purpose of this paper is to present a numerical model to investigate the dynamic behavior and force coefficients of a compact squeeze film damper with dual film clearances adjusted by an elastic ring, known as elastic ring squeeze film damper (ERSFD). Design/methodology/approach The governing equations of ERSFD as well as the boundary conditions are obtained based on Reynolds equation. A simplified Greenwood–Williamson model is implemented to investigate the contact behavior between the elastic ring and the journal. The interactions between the films and the elastic ring are achieved by block iterative method. Findings The radial deformation as well as velocity of the elastic ring are captured to illustrate the pressure profiles of the inner and outer films. High-order frequency components related to the number of the boss N are observed on the frequency spectrum of the film force. The force coefficients of the ERSFD are constant for a wider range of non-dimensional whirling radius ε compared with conventional squeeze film damper. Originality/value The force coefficients of the ERSFD are obtained by assuming that the journal center moves in a circular centered orbit. High-order frequency components related to the number of bosses N are observed. These findings may provide helpful materials for the application of the ERSFD.


Author(s):  
Luis San Andrés ◽  
Xueliang Lu ◽  
Bonjin Koo ◽  
Scott Tran

Abstract An integral squeeze film damper (ISFD) offers the advantages of a lower number of parts, a shorter axial span, a lighter weight, a split manufacturing and high precision on its film clearance construction. An ISFD does not only add damping to reduce shaft vibration amplitudes and to enhance the stability of a rotor-bearing system but also can be used to tune a rotor-bearing system natural frequency, and thus increasing the operational safety margin between the running shaft speed and the system critical speed. In spite of the numerous commercial applications, the archival literature is scant as per the experimental quantification of force coefficients for ISFDs. This paper details the results of an experimental and analytical endeavor to quantify and to predict the dynamic force coefficients of an ISFD, hence bridging the gap between theory and practice. With an axial length of 76 mm, the test damper element has four arcuate film lands, 73° in arc extent at a diameter of 157 mm, and each with a clearance (c) equaling to 0.353 mm. As is customary, the damper has its axial ends sealed with end plates produced by a set of installed shims giving an axial gap (d) equal to 1.5c, 1.21c, and 0.8c. A baseline configuration, namely open ends, is also tested without the end seals in place. In the test rig, the ISFD and its housing are flexibly mounted while the rotor is rigid and stationary (no spinning). The lubricant is an ISO VG46 oil supplied at a low pressure, 1 to 2 bar(g) and ∼ 47 °C inlet temperature, typical of compressor applications. The test procedure applies static loads on the ISFD and records the bearing static offset or eccentricity to verify the structure stiffness, and meanwhile, individual hydraulic shakers deliver dynamic loads along two orthogonal directions to produce motions over a set frequency range, 10 Hz to 160 Hz. The ISFD produces direct damping and inertia that increase with the journal static eccentricity albeit at a lower rate than predictions from a computational squeeze film flow model that includes lubricant compressibility. The end seals are effective in significantly raising the damping coefficient while reducing the oil through flow rate. The damper with the tightest sealed ends (d = 0.8c) shows nearly 20 times more damping that the open ends ISFD albeit also revealing a significant stiffness hardening (negative virtual mass) as the excitation frequency increases. On the contrary, the open ends ISFD and the sealed ends configurations with gaps d = 1.21c and 1.5c produce a (positive) virtual mass that exceeds the test element physical mass and thus softens the test element direct dynamic stiffness. For the configurations with loose end seals (d = 1.21c or larger to open ends), the model predicts well the damping coefficients but under predicts the added masses by 50% or more. Note this virtual mass coefficient, largely ignored in practice, can make the test element either extremely stiff as with the sealed damper configuration with the smallest gap d = 0.8c, or very soft as with the ISFD with end seals gap = 1.21c or 1.5c. Hence, designers are cautioned not to pursue overly tight end sealed dampers as the mineral lubricant, nearly incompressible though always having a small amount of entrapped gas, may behave distinctly when confined to a squeezed film volume and having no adequate routes to escape or flow through.


1983 ◽  
Vol 105 (3) ◽  
pp. 326-334 ◽  
Author(s):  
A. Z. Szeri ◽  
A. A. Raimondi ◽  
A. Giron-Duarte

This paper presents a simplifed analysis of viscous squeeze-film damper behavior. It makes use of the notation of averaged inertia and calculates linear velocity and inertia coeffcients. These coefficients are shown to be accurate at practical values of the length/diameter ratio and the gap Reynolds number of the viscous damper.


Sign in / Sign up

Export Citation Format

Share Document