The Effect of a Translating High Aspect Ratio Particle in a Plane Slider Bearing

1983 ◽  
Vol 105 (3) ◽  
pp. 396-404 ◽  
Author(s):  
M. T. Languirand ◽  
J. A. Tichy

An approximate solution of Stokes equations is presented to determine the pressure and velocity fields in an infinite slider bearing containing a two-dimensional high aspect ratio particle of arbitrary cross-section. The particle may translate in two directions as well as rotate about its centroid. The fluid field is divided into four regions: upstream, above, below, and downstream of the particle. The governing Stokes equations are applied to each region and solved through specific continuity requirements and pressure matching conditions. For illustrative purposes, this method of analysis is applied to a plane slider bearing containing a rectangular particle which can translate in one direction. Approximate solutions are given for the pressure and velocity fields. The solution reveals a pressure drop which develops in the pressure field at the particle location. The magnitude of this drop is shown to be dependent on a particle size, velocity, and location. It is shown that the particle has a major effect on the bearing pressure field when it is able to significantly obstruct the flow of the lubricant. To support the theoretical analysis, experimental research is performed. An experimental apparatus is used to measure the transient pressure in a slider bearing as a high aspect ratio two-dimensional rectangular particle is passed through the fluid film. The apparatus measures pressure at a particular location in the bearing and simultaneously measures the particle’s displacement with respect to its initial starting location. Results are given to demonstrate the effect of particle velocity on the pressure field in the bearing. The experimental results presented are in good agreement with analytical results obtained from the theoretical analysis.

1951 ◽  
Vol 3 (2) ◽  
pp. 133-144 ◽  
Author(s):  
J. W. Railly

SummaryA method is described whereby, at any point in an infinite parallel annulus, the approximate axial velocity due to a single row of high aspect ratio blades may be calculated from a knowledge of the conditions of flow adjacent to the blades. The method is based on the assumption of a simplified expression for the radial velocity, being the product of an unknown function of the radius and an exponential term independent of the radius containing an undetermined constant; the function and the undetermined constant are calculated by reference to the conditions of flow in the plane of the row considered. The flow due to any number of rows is then obtained by summing the radial velocity fields due to each row and obtaining the axial velocities by integration of the equation of continuity.The solution of the problem with infinitely many rows is shown to have a simple form by virtue of the fact that the flow (provided that the velocities remain finite) settles down to a pattern which is periodic by one stage pitch.


1926 ◽  
Vol 30 (182) ◽  
pp. 129-141
Author(s):  
D. M. Wrinch

The development of aerodynamical research into the usefulness of wing profiles of various types for aerofoils of high aspect ratio lends special interest to new results in two-dimensional hydrodynamics relating to the motion of a perfect fluid in the presence of a cylindrical body, especially in the case when the curve of cross-section of the body possesses only a smali amount of camber and is cusped at one end and rounded at the other.The possibility of formulating a theory which represents with reasonable accuracy the actual motions of aerofoils of high aspect ratio in a stream of air, when the air it taken to be inviscid, depends, of course, essentially in the first place on finding motions in which there is a force on the body at right angles to the direction of streaming. No theory which omits to produce this lifting force can give an account of the actual motions of aerofoils which is even approximately satisfactory.


2014 ◽  
Vol 20 (10-11) ◽  
pp. 2097-2102 ◽  
Author(s):  
Mai Trang Do ◽  
Qinggele Li ◽  
Thi Thanh Ngan Nguyen ◽  
Henri Benisty ◽  
Isabelle Ledoux-Rak ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Yunhee Cho ◽  
Thi Anh Le ◽  
Hyunjung Kim ◽  
Yeseul Hong ◽  
Heemin Hwang ◽  
...  

The steric effects of the ligands unveil the charged chalcogen sites which are induced by the ligand adsorption, thus promoting the anisotropic growth of two-dimensional transition metal chalcogenides (TMCs).


Sign in / Sign up

Export Citation Format

Share Document