Finite-Length Solutions for Rotordynamic Coefficients of Turbulent Annular Seals

1983 ◽  
Vol 105 (3) ◽  
pp. 437-444 ◽  
Author(s):  
D. W. Childs

Expressions are derived which define dynamic coefficients for high-pressure annular seals typical of wear-ring and interstage seals employed in multistage centrifugal pumps. Completely developed turbulent flow is assumed in both the circumferential and axial directions, and is modeled by Hirs’ turbulent lubrication equations. Linear zeroth and first-order perturbation equations are developed by an expansion in the eccentricity ratio. The influence of inlet swirl is accounted for in the development of the circumferential flow. The zeroth-order momentum and continuity equations are solved exactly, while their first-order counterparts are reduced to three ordinary, complex, differential equations in the axial coordinate Z. The equations are integrated to satisfy the boundary conditions and define the pressure distribution due to seal motion. Integration of the pressure distribution defines the reaction force developed by the seal and the corresponding dynamic coefficients. Finite-length solutions for the coefficients are compared to two “short-seal” solutions.

1991 ◽  
Vol 113 (1) ◽  
pp. 48-52 ◽  
Author(s):  
J. K. Scharrer ◽  
C. C. Nelson

The basic equations are derived for incompressible flow in an annular seal with a partially tapered clearance. The flow is assumed to be completely turbulent in the axial and circumferential directions with no separation, and is modeled by Hirs’ turbulent lubrication equations. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order continuity and momentum equations are solved exactly, yielding the axial and circumferential velocity components and the pressure distribution. The first-order equations are reduced to three ordinary, complex, differential equations in the axial coordinate Z. The equations are integrated to satisfy the boundary conditions and yield the perturbation pressure distribution. This resultant pressure distribution is integrated along and around the seal to yield the force developed by the seal and the corresponding dynamic coefficients. Since no component test data exist for this type of seal, the results of a parametric study on the effect of the taper length/total length ratio on the seal leakage and rotor-dynamic coefficients are presented.


1985 ◽  
Vol 107 (3) ◽  
pp. 307-316 ◽  
Author(s):  
D. W. Childs ◽  
J. B. Dressman

A combined analytical-computational method is developed to calculate the pressure field and dynamic coefficients for tapered high-pressure annular seals typical of neck-ring and interstage seals employed in multistage centrifugal pumps. Completely developed turbulent flow is assumed in both the circumferential and axial directions and is modeled by Hirs’ bulk-flow turbulent-lubrication equations. Linear zeroth- and first-order perturbation equations are developed for the momentum equations and continuity equations. The development of the circumferential velocity field is defined from the zeroth-order circumferential-momentum equation, and a leakage relationship is defined from the zeroth-order axial-momentum equation. A short-bearing approximation is used to derive an analytical expression for the first-order (dynamic) pressure gradient. This expression is integrated numerically to define dynamic coefficients for the seal. Numerical results are presented and compared to previous results for straight and tapered seals. The direct stiffness and leakage increase with increasing taper angle, while the remaining dynamic coefficients decrease. An optimal taper angle is shown to exist with respect to (a) the direct stiffness, and (b) the ratio of direct stiffness to leakage. Stiffness increases on the order of 40-50 percent are predicted. Experimental results are presented for seals with three taper angles which show generally good agreement between theory and prediction.


Author(s):  
Bachanti Krishna ◽  
B. Premachandran ◽  
Ashish K. Darpe

Seals are used to control leakage across stages in pumps and other rotating machinery such as turbomachines. However, while acting to control leakage, the seals generate a reaction force on the rotating members. The rotordynamic forces produced by fluid impact the stability behaviour of the high-speed turbomachinery, therefore precise estimation of rotordynamic parameters is important to ensure vibrational stability and desired dynamic performance of rotors having annular seals. Studies on seals have so far mainly focused on bulk flow model based on Hirs turbulent lubrication theory for calculating leakage flow rate and rotordynamic coefficients. However, it is incapable to deal complex geometries and is less efficient in predicting precise rotor dynamic parameters for high speed rotating systems due to its basic assumptions. The experiments performed for calculating rotordynamic coefficients show their dependence on many physical and mechanical properties such as working fluid properties, pressure drop, seal clearance, rotor speed, eccentricity and misalignments. With the latest high performance computing facilities it is now relatively easy to simulate the flow in seal and evaluate the dynamic coefficients at high rotational speeds and with complex geometries. This paper proposes a 3-D CFD based transient stimulation method to capture the experimental conditions in virtual environment. The fluid force is calculated by integrating pressure to the rotor surface and the stiffness and damping coefficients are evaluated by appropriate curve fitting of fluid forces for various eccentricity values. The coefficients obtained from the present method show better correlation with experimental data compared to the existing steady state CFD and theoretical models. Variation of these rotordynamic coefficients with eccentricity helps in assessing the safe design of turbomachinery.


1991 ◽  
Vol 113 (1) ◽  
pp. 53-57
Author(s):  
J. K. Scharrer ◽  
C. C. Nelson

The basic equations are derived for compressible flow in an annular seal with a partially tapered clearance. The flow is assumed to be completely turbulent in the axial and circumferential directions with no separation, and is modeled by Moody’s equation for roughness. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order continuity and momentum equations are solved exactly, yielding the axial and circumferential velocity components and the pressure distribution. The first-order equations are reduced to three ordinary, complex, differential equations in the axial coordinate Z. The equations are integrated to satisfy the boundary conditions and yield the perturbation pressure distribution. This resultant pressure distribution is integrated along and around the seal to yield the force developed by the seal and the corresponding dynamic coefficients. Since no component test data exist for this type of seal, the results of a parametric study on the effect of the taper length/seal length ratio on the seal leakage and rotordynamic coefficients are presented.


1989 ◽  
Vol 111 (1) ◽  
pp. 101-107 ◽  
Author(s):  
J. K. Scharrer

The basic equations are derived for compressible flow in a stepped labyrinth gas seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are presented in the form of a parametric study, since there are no known experimental data for the rotordynamic coefficients of stepped labyrinth gas seals. The parametric study investigates the relative rotordynamic stability of convergent, straight and divergent stepped labyrinth gas seals. The results show that, generally, the divergent seal is more stable, rotordynamically, than the straight or convergent seals. The results also show that the teeth-on-stator seals are not always more stable, rotordynamically, then the teeth-on-rotor seals as was shown by experiment by Childs and Scharrer (1986b) for a 15 tooth seal.


Author(s):  
Joseph K. Scharrer ◽  
Clay C. Nelson

The basic equations are derived for compressible flow in an annular seal with partially roughened surfaces. The flow is assumed to be completely turbulent in the axial and circumferential directions with no separation, and is modeled by Moody’s equation for roughness. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order continuity and momentum equations are solved exactly, yielding the axial and circumferential velocity components and the pressure distribution. The first-order equations are reduced to three ordinary, complex, differential equations in the axial coordinate Z. The equations are integrated to satisfy the boundary conditions and yield the perturbation pressure distribution. This resultant pressure distribution is integrated along and around the seal to yield the force developed by the seal and the corresponding dynamic coefficients. Since no test data exist for this type of seal, the results of a parametric study on the effect of the rough length/smooth length ratio on the seal leakage and rotordynamic coefficients is presented.


1988 ◽  
Vol 110 (3) ◽  
pp. 270-280 ◽  
Author(s):  
Joseph K. Scharrer

The basic equations are derived for a two-control-volume model for compressible flow in a labyrinth seal. The recirculation velocity in the cavity is incorporated into the model for the first time. The flow is assumed to be completely turbulent and isoenergetic. The wall friction factors are determined using the Blasius formula. Jet flow theory is used for the calculation of the recirculation velocity in the cavity. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first-order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients.


Author(s):  
Wanfu Zhang ◽  
Qianlei Gu ◽  
Jiangang Yang ◽  
Chun Li

The identification method using infinitesimal theory is proposed to predict rotordynamic coefficients of annular gas seals. The transient solution combined with moving grid method was unitized to obtain the fluid reaction force at a specific position under different whirling frequencies. The infinitesimal method is then applied to obtain the rotordynamic coefficients, which agrees well with published experimental results for both labyrinth seals and eccentric smooth annular seals. Particularly, the stability parameter of the effective damping coefficient can be solved precisely. Results show that the whirling frequency has little influence on direct damping coefficient, effective damping coefficient, and cross-coupled stiffness coefficient for the labyrinth seal. And the effective damping coefficients decrease as the eccentricity ratio increases. A higher eccentricity ratio tends to destabilize the seal system, especially at a low whirling frequency. Results also show that the fluid velocity in the maximum clearance in the seal leakage path is less than that in the minimum clearance. The inertial effect dominates the flow field. Then it results in higher pressure appearing in maximum clearances. The pressure difference aggravates the eccentricity of rotor and results in static instabilities of the seal system.


1987 ◽  
Vol 109 (1) ◽  
pp. 136-143 ◽  
Author(s):  
Chang-Ho Kim ◽  
D. W. Childs

An analysis for helically-grooved turbulent annular seals is developed to predict leakage and dynamic coefficients, as related to rotordynamics. The grooved surface pattern is formulated as an inhomogeneous directivity in surface shear stress. The governing equations, based on both Hirs’ turbulent lubrication theory and “fine-groove” theory, are expanded in the eccentricity ratio to yield zeroth and first-order perturbation solutions. The zeroth-order equations define the steady-state leakage and the circumferential velocity development due to wall shear for a centered rotor position. The first-order equations define perturbations in the pressure and axial and circumferential velocity fields due to small motion of the rotor about the centered position. Numerical results are presented for proposed grooved seals in the High Pressure Oxygen Turbopump (HPOTP) of the Space Shuttle Main Engine (SSME) and for a water-pump application. The results show that an optimum helix angle exists from a rotordynamic stability viewpoint. Further, a properly designed helically-grooved stator is predicted to have pronounced stability advantages over other currently used seals.


1986 ◽  
Vol 108 (2) ◽  
pp. 325-331 ◽  
Author(s):  
D. W. Childs ◽  
J. K. Scharrer

The basic equations are derived for compressible flow in a labyrinth seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equation. The first-order equations are solved by a separation of variable solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are compared to published test results.


Sign in / Sign up

Export Citation Format

Share Document