Optimum Design of Air-Conditioned Buildings

1980 ◽  
Vol 102 (3) ◽  
pp. 476-480 ◽  
Author(s):  
B. D. Gupta ◽  
S. S. Rao

The main consideration in the design of thermally insulated buildings, apart from the energy required for operation, is the total (initial plus operating) cost. There is no simple explicit relation between the total cost and energy required to maintain the desired inside conditions which are dependent on the uncontrollable outside conditions. With limited energy resources, it is necessary to conserve energy or use it optimally. A unified approach to find the optimal combination of initial cost and operating cost (energy) or total energy requirements (cooling plus heating) for air-conditioned buildings is presented in this paper. Since the thickness of insulation is one of the important factors to be considered in reducing the external load, the optimum values of insulation thickness for walls and roof are found by using the interior penalty function method of minimization. For the computation of heat gain through external walls and roof, a design day based on the average maximum solar-air temperature (computed from the hourly meteorological data) is chosen. The sensitivity of optimum design with respect to design parameters is also found.

1979 ◽  
Vol 101 (4) ◽  
pp. 633-639
Author(s):  
B. D. Gupta ◽  
S. S. Rao

The main consideration in the design of refrigerated commercial warehouses, apart from energy required for operation, is the total cost (initial plus operating costs). There is no simple explicit relation between the total cost and the energy required to maintain the desired inside conditions. Qualitatively, one feels that a design involving less initial cost requires larger energy input and hence a higher operating cost. With limited energy resources, it is necessary to conserve energy or use it optimally. A unified approach to find the optimal combination of initial cost and operating cost (energy) is presented in this paper. Since the thickness of insulation is one of the important factors to be considered in reducing the external load and hence the energy requirements, the optimum building envelope and insulation thicknesses are found for a specified volume and location by using the interior penalty function method of optimization. The procedure outlined in this paper can be used for new as well as existing building to fulfill the functional requirements optimally and thus conserve the energy to the greatest possible extent. For the computation of heat gain, the design day, based on the average maximum solar air temperature computed from the hourly meteorological data, is chosen. The resulting computer program is used to find the effect of some of the parameters like wall thickness, type of insulation, orientation of building and economics model on the optimum design.


1980 ◽  
Vol 102 (3) ◽  
pp. 481-489 ◽  
Author(s):  
S. S. Rao ◽  
B. D. Gupta

Three types of extreme value distributions are fitted to the maximum daily temperature and solar radiation. It is found that type III distribution for the largest value fits the data most closely. A methodology using the maximum yearly temperature data and extremal distributions is developed for the optimum design of refrigerated warehouses. The use of the concept of return period in the optimum design of thermal systems is also suggested. The interior penalty function method with Davidon-Fletcher-Powella method of unconstrained minimization is used as the optimization technique for solving the problems. A sensitivity analysis is conducted about the optimum design point to find the influence of changes in various design parameters on the cooling load and total cost.


2014 ◽  
Vol 955-959 ◽  
pp. 3393-3399 ◽  
Author(s):  
Wei Zheng ◽  
Yan Ming Yang ◽  
Yun Long Li ◽  
Jian Qiu Zheng

The process technique and design parameters of project of Solar Ozonic Ecological Sewage Treatment Plant (short for SOESTP) which consists of anaerobic reactor, horizontal subsurface flow (HSSF) constructed wetlands(CWs) and the combination of solar power and ozone disinfection are described, the paper further examines the removal efficiency for treating rural domestic sewage, running expense and recycling ability of product water. The results show that the average percentage removal values of CODcr,BOD5,SS,TN,NH3-N,TP range from 95.6% to 98.0%, 96.0% to 98.7%, 93.1% to 96.1%, 97.0% to 98.9%, 96.9% to 99.5%, 98.2% to 99.6%, respectively, the reduction of fecal coliform (FC) reaches 99.9%, the effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant(GB18918-2002). The running cost of SOESTP is 0.063yuan/ m3, saves much more than traditional sewage treatment, and the ozone water obtained from the reservoir will be an ideal choice for disinfection .The system has characteristics of easy manipulation, low operating cost, achieving advanced water, energy conservation and environment protection, is thought to be very suitable for use as the promotion of rural small - scale sewage treatment.


1996 ◽  
Author(s):  
Monier B. Botros ◽  
Bashar S. AbdulNour ◽  
Todd E. Smith ◽  
Ming-Chia Lia

Author(s):  
Masao Arakawa ◽  
Hiroshi Yamakawa

Abstract In this study, we summerize the method of fuzzy optimization using fuzzy numbers as design variables. In order to detect flaw in fuzzy calculation, we use LR-fuzzy numbers, which is known as its simplicity in calculation. We also use simple fuzzy numbers’ operations, which was proposed in the previous papers. The proposed method has unique characteristics that we can obtain fuzzy sets in design variables (results of the design) directly from single numerical optimizing process. Which takes a large number of numerical optimizing processes when we try to obtain similar results in the conventional methods. In the numerical examples, we compare the proposed method with several other methods taking imprecision in design parameters into account, and demonstrate the effectiveness of the proposed method.


2003 ◽  
Vol 17 (08n09) ◽  
pp. 1374-1380
Author(s):  
Jong Yun Jang ◽  
Chong Sun Lee ◽  
Chang Min Suh

The present study investigated design parameters of an anti-siphon device used with shunt valves to treat patients with hydrocephalus. Structural analyses were performed to understand roles of design variables and optimize performance of the diaphragm-type anti-siphon device (hereafter referred to as the ASD). Experiments were performed on the lab-made product and showed good agreements with the numerical simulations. Using the simulations, we were able to design a more physiological ASD which gave equal opening pressures in both supine and upright postures. Tissue encapsulization phenomenon was also simulated and the results indicated underdrainage of CSF in the upright position of the patient.


2021 ◽  
Vol 6 ◽  
pp. 41
Author(s):  
Hussein A. Kazem ◽  
Anas Quteishat ◽  
Mahmoud A. Younis

Solar water pumping systems are fundamental entities for water transmission and storage purposes whether it is has been used in irrigation or residential applications. The use of photovoltaic (PV) panels to support the electrical requirements of these pumping systems has been executed globally for a long time. However, introducing optimization sizing techniques to such systems can benefit the end-user by saving money, energy, and time. This paper proposed solar water pumping systems optimum design for Oman. The design, and evaluation have been carried out through intuitive, and numerical methods. Based on hourly meteorological data, the simulation used both HOMER software and numerical method using MATLAB code to find the optimum design. The selected location ambient temperature variance from 12.8 °C to 44.5 °C over the year and maximum insolation is 7.45 kWh/m2/day, respectively. The simulation results found the average energy generated, annual yield factor, and a capacity factor of the proposed system is 2.9 kWh, 2016.66 kWh/kWp, and 22.97%, respectively, for a 0.81 kW water pump, which is encouraging compared with similar studied systems. The capital cost of the system is worth it, and the cost of energy has compared with other systems in the literature. The comparison shows the cost of energy to be in favor of the MATLAB simulation results with around 0.24 USD/kWh. The results show successful operation and performance parameters, along with cost evaluation, which proves that PV water pumping systems are promising in Oman.


Author(s):  
S. Devaraj ◽  
M. Ramakrishna ◽  
B. Singaravel

Metal Matrix Composite (MMC) has better mechanical properties and it is possible to produce near net shape. Aluminum-based MMC (Al-MMC) has challenges in terms of machinability studies and estimation of its optimum process parameters. Alternative cutting fluid research is a challenging area in machining. To avoid, existing hydrocarbon oil-based cutting fluid, textured inserts embedded with a solid lubricant are one of the alternative solutions. Micro hole textured inserts make a hole on the rake face of the cutting tool inserts. Texture includes various important design parameters namely hole diameter, hole depth and pitch between the holes. These optimum parameters influence the machining process. In this work, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used to find the optimum design parameters (hole diameter, hole depth and pitch between holes) during turning of Al- MMC. The objective parameters considered are minimization of surface roughness, power consumption and tool flank wear. The optimum combination of these design parameters is obtained by the higher relative closeness value of the TOPSIS method. The result of the investigation revealed that these design parameters are important to obtain improved machining performance. Also, it is understood that the TOPSIS method has an appropriate procedure to solve multiple objective optimization problems in manufacturing industries.


Sign in / Sign up

Export Citation Format

Share Document