Wear Behavior of Laser Surface-Hardened Gray and Ductile Cast Irons: Part 1—Sliding Wear

1986 ◽  
Vol 108 (3) ◽  
pp. 326-333 ◽  
Author(s):  
P. A. Molian ◽  
Mark Baldwin

The influence of laser surface transformation hardening on the sliding wear characteristics and mechanisms of ASTM class-40 gray and 80-55-06 ductile cast irons was investigated. A 1.2 kw, continuous wave, CO2 gas laser was employed to scan the beam successively across the surfaces of cast irons to generate hardened and tempered layers with various case depths. A pin-on-disk wear test system was then used to study the wear behavior as functions of case depth, microstructure, hardness, and surface roughness. As expected, a dramatic improvement in resistance to scuffing and sliding wear was obtained. However, the most significant result was the occurrence of negligible oxidational wear for a load range that increased with an increase in case depth. Resistance to mild and severe wear, mild-to-severe wear transition load, and frictional heating were increased with an increase in case depth. Analysis of worn surfaces and wear debris revealed that negligible oxidational wear in laser-hardened irons is due to two mechanisms: oxidation and adhesion of oxide to the substrate. In contrast, the mild oxidational wear of untreated irons occurs through the formation of loose oxide debris. The mechanisms of severe wear were plastic deformation, delamination, and adhesion; the rate process was controlled by adhesion for laser hardened irons and delamination for untreated irons.

1987 ◽  
Vol 109 (3) ◽  
pp. 179-187 ◽  
Author(s):  
P. A. Molian

Contrary to expectations, laser surface heat treatment has a deleterious effect on the fatigue performance of pearlitic gray and ductile cast irons. A 1.2 kW, continuous wave, CO2 gas laser, operating in square beam mode, was employed to heat-treat the surfaces of standard fatigue specimens. Rotational-bending fatigue tests were then conducted on untreated (as-cast) and laser treated specimens. Results indicated that the effect on fatigue behavior of case depth, microstructure and hardness of laser-hardened surface layers were opposite to that observed in carbon and low alloy steels. A fracture model based on the presence of graphite, residual stresses, and strain-induced transformation is postulated to explain the adverse effect of laser hardening of cast irons.


1988 ◽  
Vol 110 (3) ◽  
pp. 462-466 ◽  
Author(s):  
P. A. Molian ◽  
Mark Baldwin

A 1.2-kW, continuous wave, CO2-gas laser was used to transformation harden or melt the surface of gray and ductile cast irons. Effects of surface-hardened layers on solid particle erosion showed that the erosion rate decreased with an increase in surface hardness and case depth. The order of matrix microstructures that increased the erosion rate were ledeburite, tempered martensite, and pearlite. These results were opposite to those observed in bulk-hardened alloys. Erosion mechanisms of brittle, gray iron included micromachining in the untreated condition and grain boundary cracking in the laser-treated condition. In contrast, erosion modes of ductile iron were plastic flow followed by cracking in the untreated condition and platelet formation and fatigue in the laser-treated conditions. The beneficial effects of surface hardening on erosion were examined and discussed.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1735 ◽  
Author(s):  
Liang Li ◽  
Jihe Feng ◽  
Ce Liang ◽  
Jian An

Dry sliding wear behavior of Mg97Zn1Y2 alloy was investigated at test temperatures of 50–200 °C under three sliding speeds of 0.8 m/s, 3.0 m/s and 4.0 m/s. The wear mechanisms in mild and severe wear regimes were identified by examination of morphologies and compositions of worn surfaces using scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDS), and from which wear transition maps under different sliding speeds were constructed on rectangular coordinate systems with applied load versus test temperature axes. It is found that under each sliding speed condition, mild–severe transition load decreases almost linearly within the test temperature range of 50 °C to 200 °C. Microstructure observation and hardness measurement in subsurfaces identify that the softening effect generating form dynamic crystallization (DRX) is the dominant mechanism for the mild–severe wear transition at elevated temperatures. The mild–severe wear transition at 50–200 °C follows the contact surface DRX temperature criterion, and the transition loads can be well evaluated using the criterion.


2015 ◽  
Vol 92 ◽  
pp. 136-145 ◽  
Author(s):  
Qichun Sun ◽  
Tianchang Hu ◽  
Hengzhong Fan ◽  
Yongsheng Zhang ◽  
Litian Hu

2019 ◽  
Vol 6 (4) ◽  
pp. 046545
Author(s):  
Liang Li ◽  
Changqin Feng ◽  
Wei Zhao ◽  
Ce Liang ◽  
Jian An

2020 ◽  
Vol 9 (6) ◽  
pp. 14609-14618
Author(s):  
Xue Han ◽  
Zhenpu Zhang ◽  
Yuming Pan ◽  
Gary C. Barber ◽  
Hongyu Yang ◽  
...  

2010 ◽  
Vol 20 (6) ◽  
pp. 1015-1022 ◽  
Author(s):  
X. X. Lv ◽  
H. Y. Liu ◽  
Y. B. Wang ◽  
Y. Lu ◽  
G. Y. Li ◽  
...  

Wear ◽  
1996 ◽  
Vol 197 (1-2) ◽  
pp. 38-44 ◽  
Author(s):  
G. Nicoletto ◽  
A. Tucci ◽  
L. Esposito

Sign in / Sign up

Export Citation Format

Share Document