wear transition
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 14)

H-INDEX

20
(FIVE YEARS 1)

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1857
Author(s):  
Fujun Tao ◽  
Hongfei Duan ◽  
Lijun Zhao ◽  
Jian An

Room- and elevated-temperature wear tests were conducted using a pin-on-disk testing machine to study wear behavior of Mg97Zn1Y2 alloy and role of long-period-stacking-ordered (LPSO) structure phase in mild–severe wear transition (SWT). Variation of wear rate exhibited a three-stage characteristic with load at various test temperatures, i.e., a gradual increasing stage, a slightly higher plateau stage, and a rapid rising stage. The wear mechanisms in the three stages were identified using scanning electron microscope (SEM), from which the first stage was confirmed as mild wear, and the other two stages were verified as severe wear. The interdendritic LPSO structure phase was elongated into strips along the sliding direction with Mg matrix deformation in the subsurface, plate-like LPSO structure phase precipitated at elevated temperatures of 150 and 200 °C. The fiber enhancement effect and precipitation effect of LPSO structure phase resulted in a little difference in wear rate between the first and second stages, i.e., a masking effect on SWT. Microstructure and microhardness were examined in the subsurfaces, from which the mechanism for SWT was confirmed to be dynamic recrystallization (DRX) softening. There is an apparently linear correlation between the critical load for SWT and test temperature, indicating that SWT is governed by a common critical DRX temperature.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 554
Author(s):  
Qingqiang Chen ◽  
Yalei Yu ◽  
Jie Sun ◽  
Cainian Jing ◽  
Yanhua Zhao ◽  
...  

Adding rare earth elements to magnesium alloys is an effective way to improve their wear resistance. However, the effect achieved is closely related to the friction condition. In this paper, two different types of welding wires, AZ91 magnesium alloy and AZ91 + gadolinium (Gd), were used for surface welding. Dry sliding friction and wear experiments were performed on the surfacing alloys using the pin-on-disc test. The effects of Gd addition on the wear resistance and wear mechanism of the alloy were systematically studied under low to high loads. The results show that as the load increases, the friction coefficient of the surfacing AZ91 alloy gradually decreases as the wear rate increases. A mild–severe wear transition occurred at 100 N. The addition of Gd only slightly increased the wear rate under a load of 15 N. The wear rate was significantly decreased with loads in the range of 30 to 100 N and mild–severe wear transition was avoided. The influence of both Gd addition and load on the wear mechanism were considered. The overall wear resistance of the surfacing magnesium alloy was determined.


2021 ◽  
Vol 205 ◽  
pp. 116545
Author(s):  
Ming Lou ◽  
Xiang Chen ◽  
Kai Xu ◽  
Zixuan Deng ◽  
Leilei Chen ◽  
...  

Friction ◽  
2020 ◽  
Author(s):  
Rui Yang ◽  
Wei Ma ◽  
Chunjian Duan ◽  
Song Li ◽  
Tingmei Wang ◽  
...  

Abstract The tribological behaviors of Ti-Ni51.5 at% alloy strengthened by finely dispersed Ni4Ti3 particles in reciprocating sliding against GCr15, Al2O3, and ZrO2 at room temperature were studied. Interestingly, the coefficient of friction (COF) suffered a sheer drop (from 0.9 to 0.2) when the aged alloy slid against GCr15 at a frequency of 20 Hz under a 20 N load without lubrication. However, severe-mild wear transition disappeared when a solutionized alloy was used. Moreover, the COF stabilized at a relatively high level when Al2O3 and ZrO2 were used as counterparts, although their wear mechanisms showed signs of oxidation. Scanning electron microscopy (SEM) and X-ray element mappings of the wear scars of the counterparts clearly indicate that the formation of well-distributed tribo-layer and material transfer between the ball and disk are pivotal to the severe-to-mild wear transition in the aged Ti-Ni51.5 at% alloy/GCr15 friction pair. The higher microhardness and superelasticity of the aged alloy significantly accelerate the material transfer from GCr15 to the disk, forming a glazed protective tribo-layer containing Fe-rich oxides.


Sign in / Sign up

Export Citation Format

Share Document