Thermal Performance of a Heat Storage Module Using Calcium Chloride Hexahydrate

1984 ◽  
Vol 106 (1) ◽  
pp. 106-111 ◽  
Author(s):  
D. Dietz

The thermal performance of an air-heated/cooled, phase-change, heat stoage module was tested and evaluated. The module (rated at 38.7 kWh) consist of 130 vertically oriented tubes filled with 729 kg (1607 lb) of calcium chloride hexahydrate and enclosed in a rectangular box. Heat transfer rates measured during charging and discharging decreased with time as a result of decreasing effective heat transfer area and increasing thermal resistance of the phase-change material. These two dominant effects are included in a proposed mathematical model that predicted the experimental data.

2017 ◽  
Vol 28 (7) ◽  
pp. 651-660 ◽  
Author(s):  
Apurv Yadav ◽  
Bidyut Barman ◽  
Abhishek Kardam ◽  
S Shankara Narayanan ◽  
Abhishek Verma ◽  
...  

Phase change materials can provide large heat storage density with low volume. But their low thermal conductivity limits their heat transfer capabilities. Since carbonaceous nanoparticles have a good thermal conductivity they can be applied as an additive to phase change materials to increase their heat transfer rate. In this study, nano-graphite is used as an additive and the influences of its various concentrations on the thermal conductivity and melting and freezing rate for the nanoparticle-enhanced phase change materials is experimentally investigated. Experimental results indicates a reduction of 22% in melting time and a reduction of 75% in solidification time of 0.5% nano-graphite-embedded phase change material.


Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


1993 ◽  
Vol 115 (4) ◽  
pp. 240-243 ◽  
Author(s):  
Ch. Charach

This communication extends the thermodynamic analysis of latent heat storage in a shell-and-tube heat exchanger, developed recently, to the complete heat storage-removal cycle. Conditions for the cyclic operation of this system are formulated within the quasi-steady approximation for the axisymmetric two-dimensional conduction-controlled phase change. Explicit expressions for the overall number of entropy generation units that account for heat transfer and pressure drop irreversibilities are derived. Optimization of this figure of merit with respect to the freezing point of the phase-change material and with respect to the number of heat transfer units is analyzed. When the frictional irreversibilities of the heat removal stage are negligible, the results of these studies are in agreement with those developed recently by De Lucia and Bejan (1991) for a one-dimensional latent heat storage system.


Sign in / Sign up

Export Citation Format

Share Document