A 50 kW Fluidized Bed High Temperature Solar Receiver: Heat Transfer Analysis

1988 ◽  
Vol 110 (4) ◽  
pp. 313-320 ◽  
Author(s):  
G. Flamant ◽  
D. Gauthier ◽  
C. Boudhari ◽  
Y. Flitris

A theoretical and experimental investigation of a pilot scale solar fluidized bed receiver is presented. Large diameter alumina particles were used. Experimental data with the bed in the temperature range of 550° C to 915° C (wall 740° C–1035° C) are compared with a simple model based on one parameter: the mean front wall temperature. At 950° C, the predicted efficiency is 73 percent and the measured efficiency is about 65 percent. In addition, unsteady behavior of the receiver is described by a simple heat transfer model.

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
R. Bader ◽  
A. Pedretti ◽  
A. Steinfeld

We report on the field testing of a 42 m-long full-scale solar receiver prototype installed on a 9 m-aperture solar trough concentrator. The solar receiver consists of a cylindrical cavity containing a tubular absorber with air as the heat transfer fluid (HTF). Experimental results are used to validate a heat transfer model based on Monte Carlo ray-tracing and finite-volume techniques. Performance predictions obtained with the validated model yield the following results for the receiver. At summer solstice solar noon, with HTF inlet temperature of 120 °C and HTF outlet temperature in the range 250–450 °C, the receiver efficiency ranges from 45% to 29% for a solar power input of 280 kW. One third of the solar radiation incident on the receiver is lost by spillage at the aperture and reflection inside the cavity. Other heat losses are due to natural convection (9.9–9.7% of solar power input) and re-radiation (6.1–17.6%) through the cavity aperture and by natural convection from the cavity insulation (5.6–9.1%). The energy penalty associated with the HTF pumping work represents 0.6–24.4% of the power generated.


Author(s):  
Justin Lapp ◽  
Wojciech Lipiński

A transient heat transfer model is developed for a solar reactor prototype for H2O and CO2 splitting via two-step non-stoichiometric ceria cycling. Counter-rotating cylinders of reactive and inert materials cycling between high and low temperature zones permit continuous operation and heat recovery. To guide the reactor design a transient three-dimensional heat transfer model is developed based on transient energy conservation, accounting for conduction, convection, radiation, and chemical reactions. The model domain includes the rotating cylinders, a solar receiver cavity, and insulated reactor body. Radiative heat transfer is analyzed using a combination of the Monte Carlo method, Rosseland diffusion approximation, and the net radiation method. Quasi-steady state distributions of temperatures, heat fluxes, and the non-stoichiometric coefficient are reported. Ceria cycles between temperatures of 1708 K and 1376 K. A heat recovery effectiveness of 28% and solar-to-fuel efficiency of 5.2% are predicted for an unoptimized reactor design.


Energy ◽  
2021 ◽  
Vol 214 ◽  
pp. 118895
Author(s):  
Hyungseok Nam ◽  
Jung Hwan Kim ◽  
Hana Kim ◽  
Min Jae Kim ◽  
Sang-Goo Jeon ◽  
...  

Author(s):  
Amy Mensch ◽  
Karen A. Thole

Ever-increasing thermal loads on gas turbine components require improved cooling schemes to extend component life. Engine designers often rely on multiple thermal protection techniques, including internal cooling and external film cooling. A conjugate heat transfer model for the endwall of a seven-blade cascade was developed to examine the impact of both convective cooling and solid conduction through the endwall. Appropriate parameters were scaled to ensure engine-relevant temperatures were reported. External film cooling and internal jet impingement cooling were tested separately and together for their combined effects. Experiments with only film cooling showed high effectiveness around film-cooling holes due to convective cooling within the holes. Internal impingement cooling provided more uniform effectiveness than film cooling, and impingement effectiveness improved markedly with increasing blowing ratio. Combining internal impingement and external film cooling produced overall effectiveness values as high as 0.4. A simplified, one-dimensional heat transfer analysis was used to develop a prediction of the combined overall effectiveness using results from impingement only and film cooling only cases. The analysis resulted in relatively good predictions, which served to reinforce the consistency of the experimental data.


Author(s):  
Gurveer Singh ◽  
Vishwa Deepak Kumar ◽  
Laltu Chandra ◽  
R. Shekhar ◽  
P. S. Ghoshdastidar

Abstract The open volumetric air receiver (OVAR)-based central solar thermal systems provide air at a temperature > 1000 K. Such a receiver is comprised of porous absorbers, which are exposed to a high heat-flux > 800 Suns (1 Sun = 1 kW/m2). A reliable assessment of heat transfer in an OVAR is necessary to operate such a receiver under transient conditions. Based on a literature review, the need for developing a comprehensive, unsteady, heat transfer model is realized. In this paper, a seven-equations based, one-dimensional, zonal model is deduced. This includes heat transfer in porous absorber, primary-air, return-air, receiver casing, and their detailed interaction. The zonal model is validated with an inhouse experiment showing its predictive capability, for unsteady and steady conditions, within the reported uncertainty of ±7%. The validated model is used for investigating the effect of operating conditions and absorber geometry on the thermal performance of an absorber. Some of the salient observations are (a) the maximum absorber porosity of 70–90% may be preferred for non-volumetric and volumetric-heating conditions, (b) the minimum air-return ratio should be 0.7, and (c) the smallest gap to absorber-length ratio of 0.2 should suffice. Finally, suggestions are provided for extending the model.


2013 ◽  
Vol 467 ◽  
pp. 416-419
Author(s):  
Gui Chuan Hu ◽  
Jing Hua Liu

Finite element simulation technology was applied to the steady heat transfer and thermo-mechanical coupling analysis in order to investigate the influence of thermal load on stress intensity and sealing performance. An finite element heat transfer model of cylinder head joint assembly was set up, based on which the steady heat transfer analysis was performed subsequently by applying reasonable boundary conditions and loads. The influence on cylinder head sealing performance due to thermal field under the thermal stress conditions was evaluated by using the finite element method. The results showed that the thermal load increases the bolt tensile force and the gasket pressure, which help to improve the sealing performance. Compared to the mechanical load case, the thermo-mechanical stress of the liner and the cylinder head is obviously increased, so the thermal load is not neglect able when calculating the stress intensity of the cylinder head and the cylinder liner.


2010 ◽  
Vol 24 (4) ◽  
pp. 2570-2575 ◽  
Author(s):  
Wei Wang ◽  
Xiaodong Si ◽  
Hairui Yang ◽  
Hai Zhang ◽  
Junfu Lu

Sign in / Sign up

Export Citation Format

Share Document