Pretwisted Curved Beams of Thin-Walled Open Section

1972 ◽  
Vol 39 (3) ◽  
pp. 779-785 ◽  
Author(s):  
A. I. Soler

Equations of motion are derived for coupled extension, flexure, and torsion of pretwisted curved bars of thin-walled, open section. The derivation is based on energy principles and includes inertia terms. The major effect of initial pretwist is to allow coupling of all possible beam deformation modes; however, if the bar is straight and has two axes of symmetry, pretwist causes coupling only between the two bending modes, and between extension and torsion. The governing equations are presented in first-order form, and a numerical technique is suggested for the case of space varying pretwist. It is suggested that these equations may form the basis for a simplified study of the effect of superelevation on the static and dynamic response of curved highway bridges. Finally, a simple straight beam with uniform pretwist is studied to compare effects of pretwist and restrained torsion in a thin-walled beam of open section.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ren Yongsheng ◽  
Zhang Xingqi ◽  
Liu Yanghang ◽  
Chen Xiulong

The dynamical analysis of a rotating thin-walled composite shaft with internal damping is carried out analytically. The equations of motion are derived using the thin-walled composite beam theory and the principle of virtual work. The internal damping of shafts is introduced by adopting the multiscale damping analysis method. Galerkin’s method is used to discretize and solve the governing equations. Numerical study shows the effect of design parameters on the natural frequencies, critical rotating speeds, and instability thresholds of shafts.


Author(s):  
Amirshokh Kh. Abdurakhmonov

Introduction. Today thin-walled structures are widely used in the construction industry. The analysis of their rigidity, strength and stability is a relevant task which is of particular practical interest. The article addresses a method for the numerical analysis of stability of an axially-compressed i-beam rod subjected to the axial force and the bimoment. An axially compressed i-beam rod is the subject of the study. Materials and methods. Femap with NX Nastran were chosen as the analysis toolkit. Axially compressed cantilever steel rods having i-beam profiles and different flexibility values were analyzed under the action of the bimoment. The steel class is C245. Analytical data were applied within the framework of the Euler method and the standard method of analysis pursuant to Construction Regulations 16.13330 to determine the numerical analysis method. Results. The results of numerical calculations are presented in geometrically and physically nonlinear settings. The results of numerical calculations of thin-walled open-section rods, exposed to the axial force and the bimoment, are compared with the results of analytical calculations. Conclusions. Given the results of numerical calculations, obtained in geometrically and physically nonlinear settings, recommendations for the choice of a variable density FEM model are provided. The convergence of results is estimated for different diagrams describing the steel behavior. The bearing capacity of compressed cantilever rods, exposed to the bimoment, is estimated for the studied flexibility values beyond the elastic limit. A simplified diagram, describing the steel behaviour pursuant to Construction regulations 16.13330, governing the design of steel structures, is recommended to ensure the due regard for the elastoplastic behaviour of steel. The numerical analysis method, developed for axially-compressed rods, is to be applied to axially-compressed thin-walled open-section rods. National Research Moscow State University is planning to conduct a series of experiments to test the behaviour of axially-compressed i-beams exposed to the bimoment and the axial force. Cantilever i-beams 10B1 will be used in experimental testing.


2017 ◽  
Vol 6 (1) ◽  
pp. 17-35 ◽  
Author(s):  
D. K. Sharma ◽  
Himani Mittal ◽  
Sita Ram Sharma ◽  
Inder Parkash

We considera dynamical problem for semi-infinite viscothermoelastic semi infinite cylinder loaded mechanically and thermally and investigated the behaviour of variations of displacements, temperatures and stresses. The problem has been investigated with the help of five theories of the generalized viscothermoelasticity by using the Kelvin – Voigt model. Laplace transformations and Hankel transformations are applied to equations of constituent relations, equations of motion and heat conduction to obtain exact equations in transformed domain. Hankel transformed equations are inverted analytically and for the inversion of Laplace transformation we apply numerical technique to obtain field functions. In order to obtain field functions i.e. displacements, temperature and stresses numerically we apply MATLAB software tools. Numerically analyzed results for the temperature, displacements and stresses are shown graphically.


2015 ◽  
Vol 94 ◽  
pp. 314-324 ◽  
Author(s):  
Rodrigo Gonçalves ◽  
Dinar Camotim
Keyword(s):  

1953 ◽  
Vol 20 (4) ◽  
pp. 553-560
Author(s):  
H. L. Engel ◽  
J. N. Goodier

Abstract The measurements reported verify theoretically predicted effects of tension, compression, and bending, on the torsional stiffness of uniform bars of thin-walled open section. Related modes of buckling and types of nonlinear behavior in torsion are indicated analytically and exhibited in tests, some of these being apparently new.


Sign in / Sign up

Export Citation Format

Share Document