The Inflation and Contact Constraint of a Rectangular Mooney Membrane

1974 ◽  
Vol 41 (4) ◽  
pp. 979-984 ◽  
Author(s):  
W. W. Feng ◽  
J. T. Tielking ◽  
P. Huang

This paper presents a minimum energy solution for the deformed configuration of an edge-bonded rectangular membrane loaded with uniform pressure and contacting a frictionless rigid constraint. A technique borrowed from optimization theory is employed to derive a potential energy functional which contains the contact constraint condition with no increase in the number of independent functions. This energy functional is minimized by a series of geometrically admissible, continuous, coordinate functions with constant coefficients determined by the Ritz procedure. The variable-metric method, as generalized by Fletcher and Powell, is used to find the coefficients in the energy minimizing series solutions. The results presented show the contact boundary and the distortion of a square gridwork laid on the undeformed membrane.

Magnetic relaxation of a magnetic field embedded in a perfectly conducting incompressible fluid to minimum energy magnetostatic equilibrium states is considered. It is supposed that the magnetic field is confined to a single flux tube which may be knotted. A local non-orthogonal coordinate system, zero-framed with respect to the knot, is introduced, and the field is decomposed into toroidal and poloidal ingredients with respect to this system. The helicity of the field is then determined; this vanishes for a field that is either purely toroidal or purely poloidal. The magnetic energy functional is calculated under the simplifying assumptions that the tube is axially uniform and of circular cross-section. The case of a tube with helical axis is first considered, and new results concerning kink mode instability and associated bifurcations are obtained. The case of flux tubes in the form of torus knots is then considered and the ‘ground-state’ energy function ͞m ( h ) (where h is an internal twist parameter) is obtained; as expected, ͞m ( h ), which is a topological invariant of the knot, increases with increasing knot complexity. The function ͞m ( h ) provides an upper bound on the corresponding function m ( h ) that applies when the above constraints on tube structure are removed. The technique is applicable to any knot admitting a parametric representation, on condition that points of vanishing curvature are excluded.


Author(s):  
Habib Ammari ◽  
Elie Bretin ◽  
Josselin Garnier ◽  
Hyeonbae Kang ◽  
Hyundae Lee ◽  
...  

This chapter considers the perturbations of the displacement (or traction) vector that are due to the presence of a small crack with homogeneous Neumann boundary conditions in an elastic medium. It derives an asymptotic formula for the boundary perturbations of the displacement as the length of the crack tends to zero. Using analytical results for the finite Hilbert transform, the chapter derives an asymptotic expansion of the effect of a small Neumann crack on the boundary values of the solution. It also derives the topological derivative of the elastic potential energy functional and proves a useful representation formula for the Kelvin matrix of the fundamental solutions of Lamé system. Finally, it gives an asymptotic formula for the effect of a small linear crack in the time-harmonic regime.


Author(s):  
Lallit Anand ◽  
Sanjay Govindjee

With the displacement field taken as the only fundamental unknown field in a mixed-boundary-value problem for linear elastostatics, the principle of minimum potential energy asserts that a potential energy functional, which is defined as the difference between the free energy of the body and the work done by the prescribed surface tractions and the body forces --- assumes a smaller value for the actual solution of the mixed problem than for any other kinematically admissible displacement field which satisfies the displacement boundary condition. This principle provides a weak or variational method for solving mixed boundary-value-problems of elastostatics. In particular, instead of solving the governing Navier form of the partial differential equations of equilibrium, one can search for a displacement field such that the first variation of the potential energy functional vanishes. A similar principle of minimum complementary energy, which is phrased in terms of statically admissible stress fields which satisfy the equilibrium equation and the traction boundary condition, is also discussed. The principles of minimum potential energy and minimum complementary energy can also be applied to derive specialized principles which are particularly well-suited to solving structural problems; in this context the celebrated theorems of Castigliano are discussed.


Author(s):  
Abdelkrim El Mouatasim ◽  
Rachid Ellaia ◽  
Eduardo de Cursi

Random perturbation of the projected variable metric method for nonsmooth nonconvex optimization problems with linear constraintsWe present a random perturbation of the projected variable metric method for solving linearly constrained nonsmooth (i.e., nondifferentiable) nonconvex optimization problems, and we establish the convergence to a global minimum for a locally Lipschitz continuous objective function which may be nondifferentiable on a countable set of points. Numerical results show the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document