The Design and Application of Shear Fracture Propagation Studies

1974 ◽  
Vol 96 (4) ◽  
pp. 323-329 ◽  
Author(s):  
W. A. Poynton ◽  
R. W. E. Shannon ◽  
G. D. Fearnehough

Shear fracture propagation is studied using an analysis based upon the thermodynamic equilibrium of a constant velocity fracture. This equation is shown to describe the behavior of all full scale tests which exhibit constant velocity propagation. This equation is developed to identify the conditions for fracture arrest; the resulting formulation is again consistent with full scale test behavior. The paper also discusses the application of the theory to existing and new pipelines.

2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Chung-Won Lee ◽  
Jiseong Kim ◽  
Gi-Chun Kang

Vibration and noise problems caused by a number of construction processes, specifically blasting for infrastructure development, are becoming important because of their civil appeal. In this study, a square root equation (SRE) with a 95% confidence level was proposed for predicting blasting-induced vibration through full-scale test blasting, and the vibration value predicted from this equation was located between the values predicted from the USBM (US Department of Interior, Bureau of Mines), NOF (Nippon Oil & Fats Co., Ltd.), and MCT (Ministry of Construction and Transportation) equations. Additionally, by comparing the measured noise level at full-scale test blasting with the calculated noise levels from several noise prediction equations, it was determined that the noise level predicted by the ONECRC equation had the best agreement with the measured results. However, in cases where blasting includes tunnel excavation, simultaneous measurement of vibration and noise is required to prevent damage to the surrounding facilities.


Author(s):  
Mitsuhiro Miyamoto ◽  
Haruka Okuhiro

In the present study, few studies have focused on the horizontal plane of traditional wooden houses in Japan. This study aims to examine the retrofit effects for the horizontal plane of traditional wooden houses based on full-scale tests. The first part of this paper is devoted to the experimental study performed to determine the structural behavior and characteristics of full-scale roof specimens. A horizontal shear test was conducted to obtain the fracture mode and relationship between the applied load and deformation angle. The second part deals with a static pushover analysis of the full-scale roof specimens. The results between the experimental test and the static pushover analysis are presented and discussed. The analysis model used for the static pushover analysis is proposed; the results were in good agreement with the tests.


Author(s):  
Claudio Somaschini ◽  
Tommaso Argentini ◽  
Daniele Rocchi ◽  
Paolo Schito ◽  
Gisella Tomasini

The resistance to motion of trains is an essential requisite especially while designing high-speed trains and high-capacity railway lines. The optimisation of friction effects and aerodynamic performance can be done during the design stage of a new train but the actual value of the running resistance can be inferred only by means of full-scale tests during the operation of a train. A CEN standard (EN 14067-4) describes the methodologies for the assessment of the running resistance of railway vehicles starting from full-scale test measurements. According to this standard, the speed-dependent terms of the resistance force have to be determined by means of coasting tests on railway lines, whose characteristics must be well known. Since this is not always possible and small errors on the gradient could lead to major uncertainties in the evaluation of the resistance force, a new method for the estimation of the running resistance coefficients, irrespective of the characteristics of the track is proposed in this paper. The reliability of the method is verified by comparing the results with those obtained from the procedure proposed in the CEN standard. The comparison shows that the new methodology is able to evaluate the resistance coefficients with an accuracy equivalent to that of the other methods but with fewer tests and with a more robust procedure relying on a lesser number of parameters.


Author(s):  
Bradley J. Davis ◽  
Guillaume Michal ◽  
Cheng Lu ◽  
Valerie Linton

Abstract Separations are small fissures that form along the rolling-plane of some steels when sufficient stresses are created to open planes of weakness in the material. In the pipeline industry, separations have been observed on the fracture surfaces of tensile, Charpy, and drop-weight tear tests — the key tests for determining the fracture arrest capabilities of line pipe steels. When compared, the separation appearance between lab-scale tests and full-scale fracture test are noticeably dissimilar. Therefore, the influence separations have on the fracture behaviour may not clearly scale between lab-scale and full-scale tests. In this study, the separation severity of Charpy, DWTT, and full-fracture propagation test fracture surfaces was measured and compared. Two full-scale burst tests were carried out with pipes containing a CO2/N2 mixture. Fracture surfaces were observed along the length of the pipe and captured when the separation appearance changed. For each pipe section, the corresponding lab-scale test surfaces were compared. With the separations measured across all fracture faces, the separation appearance of the full-scale test surfaces did not provide the same values as the lab-scale tests. However, the lab-scale tests did capture the trend in separation severity for each pipe section. Only the lab-scale test surfaces showed a correlation in separation severity.


Author(s):  
Valerie Linton ◽  
Bente Helen Leinum ◽  
Robert Newton ◽  
Olav Fyrileiv

Transport of anthropogenic carbon dioxide in pipelines from capture site to storage site forms an important link in the overall Carbon Capture, Transport and Storage (CCTS) scheme. The thermodynamic properties of CO2 are different from those of other gases such as natural gas that are transported in pipelines. Recent full-scale burst tests from the projects SARCO2 and COOLTRANS indicated significant variations in correction factors necessary to predict the arrest of a running ductile fracture. In addition, CO2 can be a potential hazard to human and animal life and the environment. While consequence distances of natural gas pipelines are well established and documented in standards, this is not the case with CO2. The research focused CO2SAFE-ARREST joint industry project (JIP) aims to (1) investigate the fracture propagation and arrest characteristics of anthropogenic CO2 carrying high strength steel pipelines, and (2) to investigate the dispersion of CO2 following its release into the atmosphere. The participants are DNV GL (Norway) and Energy Pipelines CRC (Australia). The project is funded by the Norwegian CLIMIT and the Commonwealth Government of Australia. The joint investigation commenced in 2016 and will continue to 2019. The experimental part of the project involves two full-scale fracture propagation tests using X65, 610mm (24“) pipe and two 6″ shock tube tests, with all tests filled with a dense phase CO2/N2 mixture. The full-scale tests were made up of 8 pipe lengths each, with nominal wall thicknesses of 13.5 mm and 14.5mm. The dispersion of the carbon dioxide from the full-scale test sections was measured through an array of sensors downwind of the test location. The tests were conducted in 2017/2018 at Spadeadam, UK. Following a short review of the background and outcomes of previous CO2 full-scale burst tests, this paper provides insight on the aims of the overall experimental program along with summary results from the first full-scale fracture propagation test, carried out in September 2017. Two companion papers provide further details on the first test. The first companion paper [IPC2018-78525] discusses the selection of pipe material properties for the test and the detailed fracture propagation test results. The second companion paper [IPC2018-78530] provides information on the dispersion of the CO2 from the first full-scale test, along with numerical modelling of the dispersion.


1994 ◽  
Vol 1 (1) ◽  
pp. 77-83
Author(s):  
Yoshiji Moro ◽  
Tomoo Fujita ◽  
Takeshi Kanno ◽  
Akira Kobayashi

2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

1992 ◽  
Vol 35 (3) ◽  
pp. 977-985 ◽  
Author(s):  
K. G. Gebremedhin ◽  
J. A. Bartsch ◽  
M. C. Jorgensen

Sign in / Sign up

Export Citation Format

Share Document