Film Cooling of a Gas Turbine Blade

1978 ◽  
Vol 100 (3) ◽  
pp. 476-481 ◽  
Author(s):  
S. Ito ◽  
R. J. Goldstein ◽  
E. R. G. Eckert

The local film-cooling produced by a row of jets on a gas turbine blade is measured by a mass transfer technique. The density of the secondary fluid is from 0.75 to two times that of the mainflow and the range of the mass flux ratio is from 0.2 to three. The effect of blade-wall curvature on the film-cooling effectiveness is very significant. On the convex wall, a near tangential jet is pushed towards the wall by the static pressure force around the jet. For a small momentum flux ratio, this results in a higher effectiveness compared with that on a flat wall. At a large momentum flux ratio, however, the jet tends to move away from the curved wall because of the effect of inertia of the jet resulting in a smaller effectiveness on the convex wall. On the concave wall, the effects of curvature are the reverse of those described for the convex wall.

1985 ◽  
Vol 107 (4) ◽  
pp. 991-997 ◽  
Author(s):  
C. Camci ◽  
T. Arts

This paper deals with an experimental investigation of heat transfer across the suction side of a high-pressure, film-cooled gas turbine blade and with an attempt to numerically predict this quantity both with and without film cooling. The measurements were performed in the VKI isentropic compression tube facility under well-simulated gas turbine conditions. Data measured in a stationary frame, with and without film cooling, are presented. The predictions of convective heat transfer, including streamwise curvature effects, are compared with the measurements. A new approach to determine the augmented mixing lengths near the ejection holes on a highly convex wall is discussed and numerical results agree well with experimentally determined heat transfer coefficients in the presence of film cooling.


2014 ◽  
Vol 971-973 ◽  
pp. 143-147 ◽  
Author(s):  
Ping Dai ◽  
Shuang Xiu Li

The development of a new generation of high performance gas turbine engines requires gas turbines to be operated at very high inlet temperatures, which are much higher than the allowable metal temperatures. Consequently, this necessitates the need for advanced cooling techniques. Among the numerous cooling technologies, the film cooling technology has superior advantages and relatively favorable application prospect. The recent research progress of film cooling techniques for gas turbine blade is reviewed and basic principle of film cooling is also illustrated. Progress on rotor blade and stationary blade of film cooling are introduced. Film cooling development of leading-edge was also generalized. Effect of various factor on cooling effectiveness and effect of the shape of the injection holes on plate film cooling are discussed. In addition, with respect to progress of discharge coefficient is presented. In the last, the future development trend and future investigation direction of film cooling are prospected.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Artur Joao Carvalho Figueiredo ◽  
Robin Jones ◽  
Oliver J. Pountney ◽  
James A. Scobie ◽  
Gary D. Lock ◽  
...  

This paper presents volumetric velocimetry (VV) measurements for a jet in crossflow that is representative of film cooling. VV employs particle tracking to nonintrusively extract all three components of velocity in a three-dimensional volume. This is its first use in a film-cooling context. The primary research objective was to develop this novel measurement technique for turbomachinery applications, while collecting a high-quality data set that can improve the understanding of the flow structure of the cooling jet. A new facility was designed and manufactured for this study with emphasis on optical access and controlled boundary conditions. For a range of momentum flux ratios from 0.65 to 6.5, the measurements clearly show the penetration of the cooling jet into the freestream, the formation of kidney-shaped vortices, and entrainment of main flow into the jet. The results are compared to published studies using different experimental techniques, with good agreement. Further quantitative analysis of the location of the kidney vortices demonstrates their lift off from the wall and increasing lateral separation with increasing momentum flux ratio. The lateral divergence correlates very well with the self-induced velocity created by the wall–vortex interaction. Circulation measurements quantify the initial roll up and decay of the kidney vortices and show that the point of maximum circulation moves downstream with increasing momentum flux ratio. The potential for nonintrusive VV measurements in turbomachinery flow has been clearly demonstrated.


Author(s):  
Lingyu Zeng ◽  
Xueying Li ◽  
Jing Ren ◽  
Hongde Jiang

Most experiments of blade film cooling are conducted with density ratio lower than that of turbine conditions. In order to accurately model the performance of film cooling under a high density ratio, choosing an appropriate coolant to mainstream scaling parameter is necessary. The effect of density ratio on film cooling effectiveness on the surface of a gas turbine twisted blade is investigated from a numerical point of view. One row of film holes are arranged in the pressure side and two rows in the suction side. All the film holes are cylindrical holes with a pitch to diameter ratio P/d = 8.4. The inclined angle is 30°on the pressure side and 34° on the suction side. The steady solutions are obtained by solving Reynolds-Averaged-Navier-Stokes equations with a finite volume method. The SST turbulence model coupled with γ-θ transition model is applied for the present simulations. A film cooling experiment of a turbine vane was done to validate the turbulence model. Four different density ratios (DR) from 0.97 to 2.5 are studied. To independently vary the blowing ratio (M), momentum flux ratio (I) and velocity ratio (VR) of the coolant to the mainstream, seven conditions (M varying from 0.25 to 1.6 on the pressure side and from 0.25 to 1.4 on the suction side) are simulated for each density ratio. The results indicate that the adiabatic effectiveness increases with the increase of density ratio for a certain blowing ratio or a certain momentum flux ratio. Both on the pressure side and suction side, none of the three parameters listed above can serve as a scaling parameter independent of density ratio in the full range. The velocity ratio provides a relative better collapse of the adiabatic effectiveness than M and I for larger VRs. A new parameter describing the performance of film cooling is introduced. The new parameter is found to be scaled with VR for nearly the whole range.


Author(s):  
Venkat S. Iyengar ◽  
Sathiyamoorthy Kumarasamy ◽  
Srinivas Jangam ◽  
Manjunath Pulumathi

Cross flow fuel injection is a widely used approach for injecting liquid fuel in gas turbine combustors and afterburners due to the higher penetration and rapid mixing of fuel and the cross flowing airstream. Because of the very limited residence time available in these combustors it is essential to ensure that smaller drop sizes are generated within a short axial distance from the injector in order to promote effective mixing. This requirement calls for detailed investigations into spray characteristics of different injector configurations in a cross-flow environment for identifying promising configurations. The drop size characteristics of a liquid jet issuing from a forward angled injector into a cross-flow of air were investigated experimentally at conditions relevant to gas turbine afterburners. A rig was designed and fabricated to investigate the injection of liquid jet in subsonic cross-flow with a rectangular test section of cross section measuring 50 mm by 70 mm. Experiments were done with a 10 degree forward angled 0.8 mm diameter plain orifice nozzle which was flush mounted on the bottom plate of test section. Laser diffraction using Malvern Spraytec particle analyzer was used to measure drops size and distributions in the near field of the spray. Measurements were performed at a distance of 70 mm from the injector at various locations along the height of the spray plume for a reasonable range of liquid flow rates as in practical devices. The sprays were characterized using the non dimensional parameters such as the Weber number and the momentum flux ratio and drop sizes were measured at three locations along the height of the spray from the bottom wall. The momentum flux ratio was varied from 5 to 25. Results indicate that with increase in momentum flux ratio the SMD reduced at the specific locations and an higher overall SMD was observed as one goes from the bottom to the top of the spray plume. This was accompanied by a narrowing of the drop size distribution.


2020 ◽  
Vol 142 (4) ◽  
Author(s):  
Francesco Ornano ◽  
Thomas Povey

Abstract The desire to improve gas turbines has led to a significant body of research concerning film cooling optimization. The open literature contains many studies considering the impact on film cooling performance of both geometrical factors (hole shape, hole separation, hole inclination, row separation, etc.) and physical influences (effect of density ratio (DR), momentum flux ratio, etc.). Film cooling performance (typically film effectiveness, under either adiabatic or diabatic conditions) is almost universally presented as a function of one or more of three commonly used non-dimensional groups: blowing—or local mass flux—ratio, density ratio, and momentum flux ratio. Despite the abundance of papers in this field, there is some confusion in the literature about the best way of presenting such data. Indeed, the very existence of a discussion on this topic points to lack of clarity. In fact, the three non-dimensional groups in common use (blowing ratio (BR), density ratio, and momentum flux ratio) are not entirely independent of each other making aspects of this discussion rather meaningless, and there is at least one further independent group of significance that is rarely discussed in the literature (specific heat capacity flux ratio). The purpose of this paper is to bring clarity to this issue of correct scaling of film cooling data. We show that the film effectiveness is a function of 11 (additional) non-dimensional groups. Of these, seven can be regarded as boundary conditions for the main flow path and should be matched where complete similarity is required. The remaining four non-dimensional groups relate specifically to the introduction of film cooling. These can be cast in numerous ways, but we show that the following forms allow clear physical interpretation: the momentum flux ratio, the blowing ratio, the temperature ratio (TR), and the heat capacity flux ratio. Two of these parameters are in common use, a third is rarely discussed, and the fourth is not discussed in the literature. To understand the physical mechanisms that lead to each of these groups being independently important for scaling, we isolate the contribution of each to the overall thermal field with a parametric numerical study using 3D Reynolds-averaged Navier–Stokes (RANS) and large eddy simulations (LES). The results and physical interpretation are discussed.


Author(s):  
S. Neelakantan ◽  
M. E. Crawford

The distributed Yavuzkurt injection model is extended to predict the effectiveness and heat transfer coefficients for film cooling injection from a single row of holes, aligned both along the direction of the freestream and at an angle with it. The injection angles were 24° and 35°. The compound angles considered were 50.5° and 60°. The Yavuzkurt film cooling model is used in conjunction with a one-equation model to yield the effectiveness and heat transfer predictions. The density ratios considered were 1.6 and 0.95 for the effectiveness predictions and 1.0 and 0.95 for the heat transfer predictions. For the effectiveness predictions, the blowing ratios range from 0.5 to 2.5, and the momentum flux ratios from 0.16 until 3.9. The hole spacings were 3, 6, and 7.8 hole diameters. The Yavuzkurt model constants are seen to be definitely correlated with the momentum flux ratio. Correlations for the model constants are obtained in terms of the momentum flux ratio. For the heat transfer predictions, the blowing ratios ranged from 0.4 to 2.0, and the momentum flux ratios from 0.16 to 3.9. The spacing between the holes was 3, 6, and 7.8 hole diameters. The matching between the effectiveness correlations and the heat transfer predictions is done on the basis of the momentum flux ratio. Results indicate that the Yavuzkurt model predictions are best for the in-line round holes. Heat transfer predictions are close to the experimental results for lower blowing ratios, until the ratio exceeds 1. For higher blowing ratios, the predictions, though less accurate, follow the experimental trends.


Sign in / Sign up

Export Citation Format

Share Document