scholarly journals Discussion: “Factors Influencing Power Loss of Tilting-Pad Thrust Bearings” (Gregory, R. S., 1979, ASME J. Lubr. Technol., 101, pp. 154–160)

1979 ◽  
Vol 101 (2) ◽  
pp. 161-161 ◽  
Author(s):  
F. A. Martin
1979 ◽  
Vol 101 (2) ◽  
pp. 154-160 ◽  
Author(s):  
R. S. Gregory

Several recent technical papers have discussed the advantages of various designs of thrust bearings by comparing the power losses of the different type bearings. However, great care must be exercised to ensure that the comparisons are fair. There are many external factors that influence loss, such as oil flowrate, clearance, supply temperature and so on. Unless compensation for these external factors is included in the analysis, the power loss comparisons may be misleading. This paper attempts to show both qualitatively and quantitatively the influence that various external factors have on bearing power loss. It has been determined experimentally that oil flowrate adjustment can vary power loss by as much as 150 percent. The choice of radial or tangential discharge can reduce power loss by 60 percent, while the actual size of the discharge can influence power loss by 50 percent. Varying the bearing end play has little effect on measured power loss.


1983 ◽  
Vol 105 (1) ◽  
pp. 39-45 ◽  
Author(s):  
A. M. Mikula ◽  
R. S. Gregory

This paper compares three different lubricant supply methods—pressurized supply (flooded), spray feed, and leading edge distribution groove—and analyzes their influence on the performance of tilting pad, equalizing thrust bearings. The paper presents experimental data on 267 mm (10-1/2 in.) o.d. bearings, operating at shaft speeds up to 13,000 rpm with loads ranging up to 3.45 MPa (500 psi). The data presented demonstrate the effect each lubricant supply method has on bearing power loss and temperature. Conclusions are drawn, based upon the effectiveness of each design, to guide the potential user.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Michal Wasilczuk ◽  
Grzegorz Rotta

Different systems of direct oil supply have been developed in order to facilitate efficient introduction of fresh lubricant to the oil gap and reduction of churning power loss in tilting pad thrust bearings. Up to now there is no documented application of the supply groove in large thrust bearings used in water power plants. The results of modeling lubricant flow in the lubricating groove of a thrust bearing pad will be presented in the paper. CFD software was used to carry out fluid film calculations. Such analysis makes it possible to modify groove geometry and other parameters and to study their influence on bearing performance. According to the results a remarkable decrease in total power loss due to avoiding churning losses can be observed in the bearing.


1976 ◽  
Vol 98 (1) ◽  
pp. 73-79 ◽  
Author(s):  
J. W. Capitao ◽  
R. S. Gregory ◽  
R. P. Whitford

A comparison of the high-speed performance characteristics of tilting-pad, self-equalizing type thrust bearings through two independent full-scale programs is reported. This paper presents experimental data on centrally pivoted, 6-pad, 267-mm (10 1/2-in.) and 304-mm (12-in.) O.D. bearings operating at shaft speeds up to 14000 rpm and bearing loads ranging up to 2.76 MPa (400 psi). Data presented demonstrate the effects of speed and loading on bearing power loss and metal temperatures. Included is a discussion of optimum oil supply flow rate based upon considerations of bearing pad temperatures and power loss values.


1985 ◽  
Vol 107 (3) ◽  
pp. 423-428 ◽  
Author(s):  
A. M. Mikula

This paper compares the leading edge groove and pressurized supply (flooded) lubricant supply methods, and analyzes their influence on the performance of equalizing tilting pad thrust bearings. This paper presents new experimental data on 6-shoe, 267 mm (10 1/2 in.) O.D. bearings, operating at shaft speeds up to 14000 rpm, with loads ranging up to 3.45 MPa (500 psi) for two different lubricants. The data presented details the power loss and babbitt temperature performance of two versions of the leading-edge-groove bearing design and contrasts the results with a pressurized supply bearing design.


1974 ◽  
Vol 96 (1) ◽  
pp. 110-116 ◽  
Author(s):  
J. W. Capitao

The influence of fluid film turbulence on the performance of centrally-pivoted tilting pad thrust bearings was analyzed. Major features of the analysis are: (1) today’s two predominant “engineering” turbulent flow theories are delineated and their quantitative predictions compared; (2) a spherical pad profile was assumed, and (3) an equal area technique was used in the finite difference equations. The results confirmed earlier predictions of increases in power loss and load capacity when compared to a laminar solution. Also, no significant differences were found between the results predicted by the two predominant turbulent flow theories. Power loss, load capacity, and hydrodynamic oil flow are given for 13, 15, and 17 in. sizes. Comparisons of laminar and turbulent numerical results are presented.


1974 ◽  
Vol 96 (1) ◽  
pp. 7-13 ◽  
Author(s):  
R. S. Gregory

As part of a continuing research program, a standard 10 1/2 in. dia thrust bearing, of the tilting-pad, self-equalizing type, was tested at shaft speeds up to 11,000 rpm and bearing loads ranging up to 400 psi. The bearing and lube oil system were instrumented to measure bearing performance under laminar and turbulent operating conditions. The effects of varying the oil feed rate on bearing temperature and power loss are discussed in this paper. Some observations on the laminar to turbulent transition region are included.


1976 ◽  
Vol 98 (1) ◽  
pp. 81-88 ◽  
Author(s):  
J. W. Capitao

A full scale experimental program was conducted to investigate the influence of fluid film turbulence on the performance of the tilting-pad, self-equalizing type thrust bearing. Test results include data on centrally pivoted, 6-pad, 381-mm (15-in.) and 432-mm (17-in.) O.D. bearings operating with shaft speeds up to 10000 rpm and bearing loads ranging up to 3.447 MPa (500 psi). Data collected include bearing metal temperatures, bearing power loss, and observation of the laminar to turbulent transition range.


Sign in / Sign up

Export Citation Format

Share Document