A Theoretical and Experimental Investigation of the Dynamic Response of Rolamite

1969 ◽  
Vol 91 (1) ◽  
pp. 235-239
Author(s):  
C. M. Percival ◽  
F. R. Norwood

In the following paper, Lagrange’s equation is used to derive an equation of motion for the rolamite mechanism in the ideal tight configuration; the effects of band inertia, force generation by bands of varying bending stiffness, and nonconservative forces are considered. An experimental system for investigating the dynamic response of rolamite is described. The effects of friction on the rolamite mechanism are discussed and experimentally determined values of coefficients of friction are presented.

2012 ◽  
Vol 443-444 ◽  
pp. 837-842
Author(s):  
Jiang Qi Long ◽  
Si Jia Zhou ◽  
Ping Yu

The reciprocating compressor contains crank-rod mechanism whose unbalanced inertia force mainly accounts for mechanical noise and vibration during the working process. Through the analysis of fit between the diameter of the compressor piston and the crank eccentricity, influence of imbalance force on the compressor vibration and noise is obtained under no change in other parts. The tests of vibration and noise are followed for the purpose of verification. The results show that the vibration and noise control will be better if a small piston diameter and a big crank eccentricity are utilized.


1985 ◽  
Vol 107 (4) ◽  
pp. 421-425 ◽  
Author(s):  
G. S. Triantafyllou ◽  
C. Chryssostomidis

The equation of motion of a long slender beam submerged in an infinite fluid moving with constant speed is derived using Hamilton’s principle. The upstream end of the beam is pinned and the downstream end is free to move. The resulting equation of motion is then used to perform the stability analysis of a string, i.e., a beam with negligible bending stiffness. It is found that the string is stable if (a) the external tension at the free end exceeds the value of a U2, where a is the “added mass” of the string and U the fluid speed; or (b) the length-over-diameter ratio exceeds the value 2Cf/π, where Cf is the frictional coefficient of the string.


Author(s):  
Wachirawit SONGSUWAN ◽  
Monsak PIMSARN ◽  
Nuttawit WATTANASAKULPONG

The dynamic behavior of functionally graded (FG) sandwich beams resting on the Pasternak elastic foundation under an arbitrary number of harmonic moving loads is presented by using Timoshenko beam theory, including the significant effects of shear deformation and rotary inertia. The equation of motion governing the dynamic response of the beams is derived from Lagrange’s equations. The Ritz and Newmark methods are implemented to solve the equation of motion for obtaining free and forced vibration results of the beams with different boundary conditions. The influences of several parametric studies such as layer thickness ratio, boundary condition, spring constants, length to height ratio, velocity, excitation frequency, phase angle, etc., on the dynamic response of the beams are examined and discussed in detail. According to the present investigation, it is revealed that with an increase of the velocity of the moving loads, the dynamic deflection initially increases with fluctuations and then drops considerably after reaching the peak value at the critical velocity. Moreover, the distance between the loads is also one of the important parameters that affect the beams’ deflection results under a number of moving loads.


Sign in / Sign up

Export Citation Format

Share Document