Forced Convection Heat Transfer From a Uniformly Heated Cylinder

1962 ◽  
Vol 84 (3) ◽  
pp. 257-261 ◽  
Author(s):  
H. C. Perkins ◽  
G. Leppert

Forced convection heat transfer from a cylindrical heating element with crossflow occurs in many situations of practical interest, but heat-transfer coefficients for liquids have been reported in the literature only for Reynolds numbers below 200. This paper correlates new data taken with water and ethylene glycol at Reynolds numbers from 40 to 100,000 and Prandtl numbers from 1 to 300. The effects of temperature differences large enough to produce significant changes in viscosity across the boundary layer have also been investigated and are correlated in terms of a viscosity ratio.

1984 ◽  
Vol 106 (2) ◽  
pp. 297-303 ◽  
Author(s):  
L. C. Chow ◽  
S. R. Husain ◽  
A. Campo

A numerical investigation was conducted to study the simultaneous effects of free convection and axial conduction on forced-convection heat transfer inside a vertical channel at low Peclet numbers. Insulated entry and exit lengths were provided in order to assess the effect of upstream and downstream energy penetration due to axial conduction. The fluid enters the channel with a parabolic velocity and uniform temperature profiles. A constant-property (except for the buoyancy term), steady-state case was assumed for the analysis. Results were categorized into two main groups, the first being the case where the channel walls were hotter than the entering fluid (heating), and the second being the reverse of the first (cooling). For each group, heat transfer between the fluid and the walls were given as functions of the Grashof, Peclet, and Reynolds numbers.


1983 ◽  
Vol 105 (2) ◽  
pp. 350-357 ◽  
Author(s):  
P. J. Giarratano ◽  
W. G. Steward

Transient forced convection heat transfer coefficients for both subcritical and supercritical helium in a rectangular flow channel heated on one side were measured during the application of a step in heat flux. Zero flow data were also obtained. The heater surface which served simultaneously as a thermometer was a fast response carbon film. Operating conditions covered the following range: Pressure, 1.0 × 105 Pa (1 bar) to 1.0 × 106 Pa (10 bar); Temperature, 4 K–10 K; Heat Flux, 0.1 W/cm2−10 W/cm2; Reynolds number, 0–8 × 105. The experimental data and a predictive correlation are presented.


1997 ◽  
Vol 119 (1) ◽  
pp. 70-79 ◽  
Author(s):  
G. Refai Ahmed ◽  
M. M. Yovanovich

Experimental studies of forced convection heat transfer from different body shapes were conducted to determine the effects of Reynolds number and different characteristic body lengths on the area-averaged Nusselt number. Although the bodies differed significantly in their shapes, they had approximately the same total surface area, A = 11,304 mm2 ± 5%. This ensured that for a given free stream velocity and total heat transfer rate all bodies had similar trends for the relationship of Nusselt and Reynolds numbers. The experimental program range was conducted in the Reynolds number range 104≤ReA≤105 and Prandtl number 0.71. Finally, the empirical models for forced convection heat transfer were developed. These empirical models were valid for a wide range of Reynolds numbers 0≤ReA≤105. The present experimental correlations were compared with available correlation equations and experimental data. These comparisons show very good agreement.


Sign in / Sign up

Export Citation Format

Share Document