A Theory Relating Creep and Relaxation for Linear Materials With Memory

2010 ◽  
Vol 77 (3) ◽  
Author(s):  
R. C. Koeller

The purpose of this paper is to suggest a linear theory of materials with memory, which gives a description for the similarities resulting when the various analytical and experimental methods used to reduce the creep and relaxation data are imposed on the observational changes in curvature that take place in both the creep compliance and relaxation modulus graphs. On a Log-Log graph both have one, two, or at most three pairs of changes in curvature depending on whether the material is a fluid or solid. These changes in curvature have been observed in many experiments and various regions have been discussed and classified. Section 1 gives a few of the many applications of fractional calculus to physical problems. In Sec. 2 an equation that contains both integration and differentiation is presented using geometrical observations about the relationship between the changes in curvature in the relaxation modulus and creep compliance based on published experiments. In Sec. 3 the generalized function approach to fractional calculus is given. In Sec. 4 a mechanical model is discussed. This model is able to share experimental data between the creep and relaxation functions, as well as the real and imaginary parts of the complex compliance or the complex modulus. This theory shares information among these three experimental methods into a unifying theory for solid materials when the loads are within the linear range. Under a limiting case, this theory can account for flow so that the material need not return to its original shape after the load is removed. The theory contains one physical parameter, which is related to the speed of sound and a group of phenomenological parameters that are functions of temperature and the composition of the material. These phenomenological parameters are relaxation times and creep times. This theory differs from the classical polynomial constitutive equations for linear viscoelasticity. It is a special case of Rabotnov’s equations and Torvik and Bagley’s fractional calculus polynomial equations, but it imposes symmetry conditions on the stress and strain when the material is a solid. Sections 56 are comments and conclusions, respectively. No experimental results are given at this time since this paper presents the foundations of materials with memory as related to experimental data. The introduction of experimental data to fit this theory will result in the breakdown of an important part of this research.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5213
Author(s):  
Vitor Dacol ◽  
Elsa Caetano ◽  
João Correia

The accurate analysis of the behaviour of a polymeric composite structure, including the determination of its deformation over time and also the evaluation of its dynamic behaviour under service conditions, demands the characterisation of the viscoelastic properties of the constituent materials. Linear viscoelastic materials should be experimentally characterised under (i) constant static load and/or (ii) harmonic load. In the first load case, the viscoelastic behaviour is characterised through the creep compliance or the relaxation modulus. In the second load case, the viscoelastic behaviour is characterised by the complex modulus, E*, and the loss factor, η. In the present paper, a powerful and simple implementing technique is proposed for the processing and analysis of dynamic mechanical data. The idea is to obtain the dynamic moduli expressions from the Exponential-Power Law Method (EPL) of the creep compliance and the relaxation modulus functions, by applying the Carson and Laplace transform functions and their relationship to the Fourier transform, and the Theorem of Moivre. Reciprocally, once the complex moduli have been obtained from a dynamic test, it becomes advantageous to use mathematical interconversion techniques to obtain the time-domain function of the relaxation modulus, E(t), and the creep compliance, D(t). This paper demonstrates the advantages of the EPL method, namely its simplicity and straightforwardness in performing the desirable interconversion between quasi-static and dynamic behaviour of polymeric and polymer-composite materials. The EPL approximate interconversion scheme to convert the measured creep compliance to relaxation modulus is derived to obtain the complex moduli. Finally, the EPL Method is successfully assessed using experimental data from the literature.


2020 ◽  
Vol 54 (23) ◽  
pp. 3245-3260 ◽  
Author(s):  
Reza T Faal ◽  
Reza Sourki ◽  
Bryn Crawford ◽  
Reza Vaziri ◽  
Abbas S Milani

In this article, the viscoelastic behavior of fabric yarns is modeled by a new means of fractional calculus. First, the constitutive relation of the fractional “Poynting-Thomson” model is developed to investigate the behavior of yarns. The proposed material constitutive relation is a differential equation of fractional order, where the response to a unit step of stress (for determination of creep compliance), or a unit step of strain (for stress relaxation modulus) can be readily found in the literature. Here, focusing on the stress relaxation, the response function is fitted to the experimental data of yarns in a typical woven fabric prepreg, at both dry and partially consolidated conditions. The yarns were made of E-glass fibers comingled with polypropylene fibers. The results showed a significant agreement with experimental data along with improved predictions of the new fractional modeling approach when compared to other approaches such as the integer order model and Prony series. For early relaxation times, especially for [Formula: see text] a considerable discrepancy was observed between the values of relaxation modulus obtained by the experiments and that by the integer-order derivative model. However, the results extracted via the fractional derivatives were in close agreement with experimental results at all relaxation times. Using the fractional properties of the yarns, the variation of storage and loss moduli of the yarns with external frequency loading was also predicted, capturing both the rubbery and glassy regions of the material frequency response.


Author(s):  
Changqing Fang ◽  
Xiaoyin Shen ◽  
Kuai He ◽  
Chao Yin ◽  
Shasha Li ◽  
...  

A three-branch viscoelastic model based on fractional derivatives is proposed for the viscoelastic behaviours of solid propellants. The simulation results show a satisfactory agreement with the stress relaxation modulus and complex modulus of solid propellants. As a comparison, the static modulus is also characterized by traditional viscoelastic model with integer-order derivatives. Results show that the application of the fractional derivatives to the viscoelastic constitutive model can effectively reduce the number of the required parameters while giving an accurate prediction of viscoelastic behaviours of solid propellants. Moreover, a simple and effective direct search method based on simulated annealing and Powell's mothed is proposed for the data fitting. This article is part of the theme issue ‘Advanced materials modelling via fractional calculus: challenges and perspectives'.


Author(s):  
A. S. M. Asifur Rahman ◽  
Rafiqul A. Tarefder

Viscoelastic material functions such as time domain functions, such as, relaxation modulus and creep compliance, or frequency domain function, such as, complex modulus can be used to characterize the linear viscoelastic behavior of asphalt concrete in modeling and analysis of pavement structure. Among these, the complex modulus has been adopted in the recent pavement Mechanistic-Empirical (M-E) design software AASHTOWare-ME. However, for advanced analysis of pavement, such as, use of finite element method requires that the complex modulus function to be converted into relaxation modulus or creep compliance functions. There are a number of exact or approximate methods available in the literature to convert complex modulus function to relaxation modulus or creep compliance functions. All these methods (i.e. exact or approximate methods) are applicable for any linear viscoelastic material up to a certain level of accuracy. However, the applicability and accuracy of these interconversion methods for asphalt concrete material were not studied very much in the past and thus question arises if these methods are even applicable in case of asphalt concrete, and if so, what is the precision level of the interconversion method being used. Therefore, to investigate these facts, this study undertaken an effort to validate a numerical interconversion technique by conducting representative laboratory tests. Cylindrical specimens of asphalt concrete were prepared in the laboratory for conducting complex modulus, relaxation modulus, and creep compliance tests at different test temperatures and loading rates. The time-temperature superposition principle was applied to develop broadband linear viscoelastic material functions. A numerical interconversion technique was used to convert complex modulus function to relaxation modulus and creep compliance functions, and hence, the converted relaxation modulus and creep compliance are compared to the laboratory tested relaxation modulus and creep compliance functions. The comparison showed good agreement with the laboratory test data. Toward the end, a statistical evaluation was conducted to determine if the interconverted material functions are similar to the laboratory tested material functions.


Author(s):  
Jo Sias Daniel ◽  
Y. Richard Kim

As the application of nondestructive testing on pavements in service becomes more frequent, it is increasingly important to relate the resulting stiffnesses to those from laboratory test methods. The relationship among stiffnesses measured from five test methods currently used for asphalt concrete is addressed: creep compliance, complex modulus, impact resonance, falling weight deflectometer, and surface wave. Established relationships from linear viscoelastic theory are used to relate stiffnesses, including a comparison of creep stiffness, S( t), and relaxation modulus, E( t), calculated from creep compliance, D( t). Using laboratory and field measured stiffnesses, a linear relationship was discovered between stiffness and frequency on a log-log scale.


1984 ◽  
Vol 51 (2) ◽  
pp. 299-307 ◽  
Author(s):  
R. C. Koeller

The connection between the fractional calculus and the theory of Abel’s integral equation is shown for materials with memory. Expressions for creep and relaxation functions, in terms of the Mittag-Leffler function that depends on the fractional derivative parameter β, are obtained. These creep and relaxation functions allow for significant creep or relaxation to occur over many decade intervals when the memory parameter, β, is in the range of 0.05–0.35. It is shown that the fractional calculus constitutive equation allows for a continuous transition from the solid state to the fluid state when the memory parameter varies from zero to one.


Meccanica ◽  
1972 ◽  
Vol 7 (1) ◽  
pp. 21-21
Author(s):  
G. Capriz

1997 ◽  
Vol 119 (3) ◽  
pp. 262-265 ◽  
Author(s):  
S. R. White ◽  
A. B. Hartman

Little experimental work has been done to characterize how the viscoelastic properties of composite material matrix resins develop during cure. In this paper, the results of a series of creep tests carried out on 3501–6 epoxy resin, a common epoxy matrix material for graphite/epoxy composites, at several different cure states is reported. Beam specimens were isothermally cured at increasing cure temperatures to obtain a range of degrees of cure from 0.66 to 0.99. These specimens were then tested in three-point bending to obtain creep compliance over a wide temperature range. The master curves and shift functions for each degree of cure case were obtained by time-temperature superposition. A numerical technique and direct inversion were used to calculate the stress relaxation modulus master curves from the creep compliance master curves. Direct inversion was shown to be adequate for fully cured specimens, however it underpredicts the relaxation modulus and the transition for partially cured specimens. Correlations with experimental stress relaxation data from Kim and White (1996) showed that reasonably accurate results can be obtained by creep testing followed by numerical conversion using the Hopkins-Hamming method.


Sign in / Sign up

Export Citation Format

Share Document