complex moduli
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Vol 5 (2) ◽  
pp. 23
Author(s):  
Albert Barrabino ◽  
Torleif Holt ◽  
Bård Bjørkvik ◽  
Erik Lindeberg

An oscillating drop rheometer capable of operating under conditions of high pressure and high temperature has been built. The oscillating drop mechanism was able to support pressures as high as 1300 bar and successfully performed oscillations at constant pressure. Apparent elastic and viscous complex moduli were measured for a system of CO2 and synthetic seawater containing 100 ppm of a linear alkyl ethoxylate surfactant for different pressures and temperatures. The moduli had strong dependencies on both pressure and temperature. At temperatures of 40 and 80 °C, the apparent elastic modulus passed through a maximum for pressures between 100 and 300 bar. The harmonic distortion of the oscillations was calculated for all measurements, and it was found that drop oscillations below ca. 2.6 µL caused distortions above 10% due to a mechanical backlash of the motor.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5213
Author(s):  
Vitor Dacol ◽  
Elsa Caetano ◽  
João Correia

The accurate analysis of the behaviour of a polymeric composite structure, including the determination of its deformation over time and also the evaluation of its dynamic behaviour under service conditions, demands the characterisation of the viscoelastic properties of the constituent materials. Linear viscoelastic materials should be experimentally characterised under (i) constant static load and/or (ii) harmonic load. In the first load case, the viscoelastic behaviour is characterised through the creep compliance or the relaxation modulus. In the second load case, the viscoelastic behaviour is characterised by the complex modulus, E*, and the loss factor, η. In the present paper, a powerful and simple implementing technique is proposed for the processing and analysis of dynamic mechanical data. The idea is to obtain the dynamic moduli expressions from the Exponential-Power Law Method (EPL) of the creep compliance and the relaxation modulus functions, by applying the Carson and Laplace transform functions and their relationship to the Fourier transform, and the Theorem of Moivre. Reciprocally, once the complex moduli have been obtained from a dynamic test, it becomes advantageous to use mathematical interconversion techniques to obtain the time-domain function of the relaxation modulus, E(t), and the creep compliance, D(t). This paper demonstrates the advantages of the EPL method, namely its simplicity and straightforwardness in performing the desirable interconversion between quasi-static and dynamic behaviour of polymeric and polymer-composite materials. The EPL approximate interconversion scheme to convert the measured creep compliance to relaxation modulus is derived to obtain the complex moduli. Finally, the EPL Method is successfully assessed using experimental data from the literature.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2197
Author(s):  
Lu Yang ◽  
Dunhong Zhou ◽  
Yang Kang

Recently, low-cost, high-quality graphene can be obtained readily, so it is potential to prepare conductive graphene modified asphalts (GMAs). In this paper, GMAs were prepared with 0%, 2%, 4%, 6%, 8%, and 10% of graphene by weight of composites. Dynamic shear rheological experiments conducted from −30 to 120 °C illustrate that elasticity at above ambient temperatures and rutting resistance at higher temperatures are enhanced and, especially, the conceived percolation of GMAs occurs at graphene contents (GC) above 8% which were verified from three changes as GC increases, i.e., the curve characteristics of complex moduli, storage moduli at temperatures over 100 °C, temperatures when the phase angle reaches 90° and the trend of TG′=G″. The modification mechanisms are different before and after percolation. Before the percolation threshold, graphene which has a molecular structure similar to asphaltene enhances asphalt, like increasing asphaltene components, and after threshold, graphene improves asphalt because of the formed graphene networks. Rotational viscosities test results show that the higher the GC is, the higher the operating temperatures are, but the operating temperatures are higher than 200 °C when GC is above 4%. The percolation helps to further develop conductive asphalt concrete for intelligence pavement, but the operating properties of GMAs need to be improved.


2020 ◽  
Author(s):  
Thibault Wassereau ◽  
Jean-Louis Guyader ◽  
Frédéric Ablitzer ◽  
Charles Pezerat

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
J. Em-Udom ◽  
N. Pisutha-Arnond

The phase field crystal (PFC) method is a density-functional-type model with atomistic resolution and operating on diffusive time scales which has been proven to be an efficient tool for predicting numerous material phenomena. In this work, we first propose a method to predict viscoelastic-creep and mechanical-hysteresis behaviors in a body-centered-cubic (BCC) solid using a PFC method that is incorporated with a pressure-controlled dynamic equation which enables convenient control of deformation by specifying external pressure. To achieve our objective, we use constant pressure for the viscoelastic-creep study and sinusoidal pressure oscillation for the mechanical-hysteresis study. The parametric studies show that the relaxation time in the viscoelastic-creep phenomena is proportional to temperature. Also, mechanical-hysteresis behavior and the complex moduli predicted by the model are consistent with those of the standard linear solid model in a low-frequency pressure oscillation. Moreover, the impact of temperature on complex moduli is also investigated within the solid-stabilizing range. These results qualitatively agree with experimental and theoretical observations reported in the previous literature. We believe that our work should contribute to extending the capability of the PFC method to investigate the deformation problem when the externally applied pressure is required.


Author(s):  
Y. Zhuk ◽  
A. Tarasov

Damping problem for axisymmetric resonant vibration of the shear compliant inelastic cylindrical shell with piezoactuator under electromechanical monoharmonic excitation is considered. The problem is solved for the refined problem statement accounting for shear strain, rotation inertia and thermal dependence of the material properties. Problem statement is based on the application of the amplitude constitutive relations for cyclically deformed material and complex moduli concept. The moduli for both piezoactive and piezopassive material are considered to be the functions of temperature. The nonlinear problem is solved numerically with the use of the iterative approach. The possibility of active damping of the forced vibration by means of the piezoactivator with account of shear strain is studied.


Polymers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 833 ◽  
Author(s):  
Esther Ramakers-van Dorp ◽  
Thomas Haenel ◽  
Dominik Ciongwa ◽  
Bernhard Möginger ◽  
Berenika Hausnerova

This study presents a microindentation system which allows spatially resolved local as well as bulk viscoelastic material information to be obtained within one instrument. The microindentation method was merged with dynamic mechanical analysis (DMA) for a tungsten cone indenter. Three tungsten cone indenters were investigated: tungsten electrode, tungsten electrode + 2% lanthanum, and tungsten electrode + rare earth elements. Only the tungsten electrode + 2% lanthanum indenter showed the sinusoidal response, and its geometry remained unaffected by the repeated indentations. Complex moduli obtained from dynamic microindentation for high-density polyethylene, polybutylene terephthalate, polycarbonate, and thermoplastic polyurethane are in agreement with the literature. Additionally, by implementing a specially developed x-y-stage, this study showed that dynamic microindentation with a tungsten cone indenter was an adequate method to determine spatially resolved local viscoelastic surface properties.


Sign in / Sign up

Export Citation Format

Share Document