Understanding Interior Ballistic Processes in a Flash Tube

2010 ◽  
Vol 77 (5) ◽  
Author(s):  
Ryan W. Houim ◽  
Kenneth K. Kuo

Vented flash tubes have often been used in the ignition train of medium and large caliber weapon systems. Despite their long history of ballistic usage, there are undesirable features associated with uneven venting of the combustion products. Pressure measurements at various locations from the flash tube have shown severe variations with time, which is associated with spatially nonuniform mass discharging rate from the vent holes. Measured pressure profiles in the flash tube show counterintuitive, nonmonotonic pressure distributions with the lowest pressure in the middle of the venting section of the flash tube. A model of the flash tube venting process was developed to explain these phenomena using modern, high-order numerical schemes. Source terms accounting for mass addition from the black powder pellets, mass loss through the vent holes, wall friction, differential area changes, and volume changes from surface regression of black powder pellets were fully coupled in the model. The numerical results of this model reproduced the severe pressure variations and nonmonotonic pressure profiles observed in experiments. In general, they are caused by gas dynamic effects from a slowly moving normal shock wave in the middle portion of the venting section of the flash tube. As the driving pressure from the burning black powder pellets changes, the location of the normal shock wave jumps from one vent hole set to another, producing pressure variations observed in experiments. The physical understanding gained from this model solution has provided guidance for achieving more uniform mass discharging rate by varying the vent hole sizes as a function of distance along the flash tube.

AIAA Journal ◽  
1965 ◽  
Vol 3 (3) ◽  
pp. 554-556 ◽  
Author(s):  
CLARK H. LEWIS ◽  
E. G. BURGESS

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jeyakumar Suppandipillai ◽  
Jayaraman Kandasamy ◽  
R. Sivakumar ◽  
Mehmet Karaca ◽  
Karthik K.

Purpose This paper aims to study the influences of hydrogen jet pressure on flow features of a strut-based injector in a scramjet combustor under-reacting cases are numerically investigated in this study. Design/methodology/approach The numerical analysis is carried out using Reynolds Averaged Navier Stokes (RANS) equations with the Shear Stress Transport k-ω turbulence model in contention to comprehend the flow physics during scramjet combustion. The three major parameters such as the shock wave pattern, wall pressures and static temperature across the combustor are validated with the reported experiments. The results comply with the range, indicating the adopted simulation method can be extended for other investigations as well. The supersonic flow characteristics are determined based on the flow properties, combustion efficiency and total pressure loss. Findings The results revealed that the augmentation of hydrogen jet pressure via variation in flame features increases the static pressure in the vicinity of the strut and destabilize the normal shock wave position. Indeed, the pressure of the mainstream flow drives the shock wave toward the upstream direction. The study perceived that once the hydrogen jet pressure is reached 4 bar, the incoming flow attains a subsonic state due to the movement of normal shock wave ahead of the strut. It is noticed that the increase in hydrogen jet pressure in the supersonic flow field improves the jet penetration rate in the lateral direction of the flow and also increases the total pressure loss as compared with the baseline injection pressure condition. Practical implications The outcome of this research provides the influence of fuel injection pressure variations in the supersonic combustion phenomenon of hypersonic vehicles. Originality/value This paper substantiates the effect of increasing hydrogen jet pressure in the reacting supersonic airstream on the performance of a scramjet combustor.


2012 ◽  
Author(s):  
Sergey Gimelshein ◽  
Ingrid Wysong ◽  
Yevgeny Bondar ◽  
Mikhail Ivanov

1990 ◽  
Author(s):  
L. F. Henderson ◽  
R. J. Virgona ◽  
J. Di ◽  
L. G. Gvozdeva

Sign in / Sign up

Export Citation Format

Share Document