Bubble Dynamics for Nucleate Pool Boiling of Electrolyte Solutions

2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Seyed Ali Alavi Fazel ◽  
Seyed Baher Shafaee

Bubble dynamics is the most important subphenomenon, which basically affects the nucleate pool boiling heat transfer coefficient. Previous investigations state that the effect of physical properties of liquid and vapor phases on bubble departure diameter are often conflicting. In this article, extensive new experimental data are presented for the bubble departure diameter for various electrolyte aqueous solutions over a wide range of heat fluxes and concentrations. Experimental results show that the bubble detachment diameter increase with increasing either boiling heat flux or electrolyte concentration. Experimental results also present a close relation between the dimensionless capillary and bond numbers. A new model for the prediction of vapor bubble departure diameter in nucleate boiling for the electrolyte solutions is proposed, which predicts the experimental data with a satisfactory accuracy.

1993 ◽  
Vol 115 (1) ◽  
pp. 89-100 ◽  
Author(s):  
I. Mudawar ◽  
T. M. Anderson

A high flux electronic chip was numerically and experimentally simulated to investigate pool boiling capabilities of enhanced metallic surface attachments built upon a 12.7 × 12.7 mm2 base area. It is shown how experimental nucleate boiling data for a flat chip and for chips with low-profile microstructures can be used as input boundary conditions in the numerical prediction of boiling performances of high flux, smooth and microstructured extended cylindrical surfaces. A technique for extending the applicability of the numerical results to cylindrical fin arrays is demonstrated with the aid of experimental data obtained for these surfaces. Surface enhancement resulted in chip planform heat fluxes of 105.4 and 159.3 W/cm2, for saturated and 35°C subcooled FC-72, respectively.


2014 ◽  
Vol 9 (2) ◽  
pp. 145-155
Author(s):  
Vladimir Serdyukov ◽  
Anton Surtaev ◽  
Oleg Volodin

This paper deals with the features of nucleation dynamics at boiling in falling water films at different subcooling, Reynolds number and heat fluxes. With the use of high-speed infrared and digital video the local parameters of nucleate boiling in falling liquid films such as: bubbles’ diameter before condensation, frequency of nucleation and temperature of onset of bubble appearance were received. Analysis of the experimental data showed that bubbles’ diameter before condensation has strong dependence on initial temperature and increases with the rise of heat flux. The main influence on nucleation frequency has the variation of heat flux density. At the same time the experimental data on nucleation frequency in falling water films are close to the frequency of nucleation at pool boiling. To identify the main features the comparison of received data on the local characteristics at boiling in subcooled falling liquid film with existing models for pool boiling was made


2014 ◽  
Vol 592-594 ◽  
pp. 1601-1606 ◽  
Author(s):  
Sameer Sheshrao Gajghate ◽  
Anil R. Aacharya ◽  
Anil T. Pise ◽  
Ganesh S. Jadhav

The addition of additives to the water is known to enhance boiling heat transfer. In the present investigation, boiling heat transfer coefficients are measured for Nichrome wire, immersed in saturated water with & without additive. An additive used is 2-Ethyl 1-Hexanol with varying concentrations in the range of 10-10000 ppm. Extensive experimentation of pool boiling is carried out above the critical heat flux. Boiling behavior i.e. bubble dynamics are observed at higher heat flux for nucleate boiling of water over wide ranges of concentration of additive in water. Results are encouraging and show that a small amount of surface active additive makes the nucleate boiling heat transfer coefficient considerably higher, and that there is an optimum additive (500-1000ppm) concentration for higher heat fluxes. An optimum level of enhancement is observed up to a certain amount of additive 500-1000ppm in the tested range. Thereafter significant enhancement is not observed. This enhancement may be due to change in thermo-physical properties i.e. mainly due to a reduction in surface tension of water in the presence of additive.


Author(s):  
K-J Park ◽  
D Jung ◽  
S E Shim

In this work, nucleate pool boiling heat transfer coefficients (HTCs) of five refrigerants of differing vapour pressures are measured on a horizontal, smooth copper surface of 9.53×9.53 mm. The tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from 10 kW/m2 to the critical heat flux (CHF) of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool, respectively. Test results show that nucleate pool boiling HTCs of halogenated refrigerants increase as the heat flux and vapour pressure increase. This typical trend is maintained even at high heat fluxes above 200 kW/m2. Zuber's prediction equation for CHF is quite accurate showing a maximum deviation of 21 per cent for all refrigerants tested. For all refrigerants, Stephan and Abdelsalam's well-known correlation underpredicted nucleate boiling HTC data up to the CHF with an average deviation of 21.3 per cent, while Cooper's correlation overpredicted the data with an average deviation of 14.2 per cent. On the other hand, Gorenflo's and Jung et al.'s correlations showed 5.8 and 6.4 per cent deviations, respectively, in the entire nucleate boiling range up to the CHF.


Author(s):  
Smreeti Dahariya ◽  
Amy Rachel Betz

The thermo-fluid properties of water change at high pressure. The performance of high pressure pool boiling greater than 50 Psi has not been studied widely. The aim of this paper is to analyze the experimental data to describe the effect of increasing pressure during pool boiling. Hsu’s correlation was used to predict the active nucleation sites. The maximum and minimum radii of the active nucleation sites were determined as a function of heat flux or degree of wall superheats over a wide range of pressures. The bubble dynamics are discussed using the predicted values of fundamental boiling quantities such as bubble departure diameter, active nucleation site density and bubble release frequency. The thickness of the boundary layer was assumed to be 30 microns. Rohsenow’s and Forster’s correlations were used to predict the pool boiling curve for different pressures. The comparison was made with the experimental data for water of a plain copper surface of increasing pressure. The parametric trend provides fundamental insight and explains how the system pressure can maximize the boiling efficiency of new generation boilers.


2020 ◽  
Vol 4 (2) ◽  
pp. 157-166
Author(s):  
Touhami Baki

Nucleate pool boiling is a very efficient transfer regime with low temperature gradients, bounded between two heat flux values and which border transitions to other regimes, this phenomenon is well framed with correlations; our study aims to clarify the applicability of this regime to liquid hydrogen and to develop reliable correlations for a useful and qualitative agreement. An exhaustive review on the nucleate pool boiling of hydrogen and the limits of this regime, whether are the onset nucleate boiling (ONB) and the critical heat flux (CHF) was made, allowing the collection of more than 1400 points from experimental setups, highlighting a variety of parameters. Five predictive correlations were drawn from the literature, graphical and statistical comparisons were made, two in five reveal acceptable results. After analysis of the experimental data, new correlations were developed and compared with the data collected, convincing results were obtained and discussed. A simple form was expressed for the heat flux , shows better predicted values; convincing results of the (CHF) have been found on modified Kutateladze correlation (1948), and the CHF value reaches a maximum of 148×103 W/m² for a reduced pressure at 0.35; a nucleate boiling correlation suitable for hydrogen has been developed.


1969 ◽  
Vol 91 (3) ◽  
pp. 315-328 ◽  
Author(s):  
I. Shai ◽  
W. M. Rohsenow

Experimental data for sodium boiling on horizontal surfaces containing artificial cavities at heat fluxes of 20,000 to 300,000 Btu/ft2 hr and pressures between 40 to 106 mm Hg were obtained. Observations are made for stable boiling, unstable boiling and “bumping.” Some recorded temperature variations in the solid close to the nucleating cavity are presented. It is suggested that for liquid metals the time for bubble growth and departure is a very small fraction of the total bubble cycle, hence the delay time during which a thermal layer grows is the most significant part of the process. On this basis the transient conduction heat transfer is solved for a periodic process, and the period time is found to be a function of the degree of superheat, the heat flux and the liquid thermal properties. A simplified model for stability of nucleate pool boiling of liquid metals is postulated from which the minimum heat flux for stable boiling can be found as a function of liquid-solid properties, liquid pressure, the degree of superheat, and the cavity radius and depth. At relatively low heat fluxes, convection currents have significant effects on the period time of bubble formation. An empirical correlation is proposed, which takes into account the convection effects, to match the experimental results.


2003 ◽  
Vol 125 (6) ◽  
pp. 1087-1095 ◽  
Author(s):  
H. Louahlia-Gualous ◽  
P. K. Panday ◽  
E. A. Artioukhine

This article treats the local heat transfer for nucleate pool boiling around the cylinder using the inverse heat conduction analysis. The physical model considers a half section of a cylinder with unknown surface temperature and heat flux density. The iterative regularization and the conjugate gradient methods are used for solving the inverse analysis. The local Nusselt number profiles for nucleate pool boiling are presented and analyzed for different electric heat. The mean Nusselt number estimated by IHCP is closed with the measured values. The results of IHCP are compared to those of Cornewell and Houston (1994), Stephan and Abdelsalam (1980) and Memory et al. (1995). The influence of the error of the measured temperatures and the error in placement of the thermocouples are studied.


1995 ◽  
Vol 117 (2) ◽  
pp. 408-417 ◽  
Author(s):  
T. Oka ◽  
Y. Abe ◽  
Y. H. Mori ◽  
A. Nagashima

A series of pool boiling experiments have been conducted under reduced gravity condition (the order of 10−2 times the terrestrial gravity) available in an aircraft taking parabolic flight. A transparent resistant heater, a transparent indium oxide film plated on a glass plate, was employed so that the vapor/liquid behavior interacting with the heater surface could be observed from the rear side of the heater simultaneously with the side view of vapor bubbles above the heater surface. The experiments were performed for three different fluids—n-pentane, CFC-113, and water—under subcooled conditions. The critical heat fluxes for both n-pentane and CFC-113 under the reduced gravity were lowered to about 40 percent of the corresponding terrestrial values. Although the heat transfer characteristics in a low heat flux nucleate boiling regime for both n-pentane and CFC-113 showed no more than a slight change with the reduction in gravity, a significant heat transfer deterioration was noted with water in the reduced gravity boiling. The observation from the rear side of the heater suggested that this particular difference in the gravity dependency of heat transfer was ascribed to a considerable difference, between the organic fluids and water, in the behavior of attachment to the heater surface of the bubbles grown up, while the behavior of attachment must depend on the surface tension of each fluid and the wettability of the heater surface with the fluid.


Sign in / Sign up

Export Citation Format

Share Document