Investigation of the Dynamics of Nucleate Boiling in Subcooled Falling Liquid Films

2014 ◽  
Vol 9 (2) ◽  
pp. 145-155
Author(s):  
Vladimir Serdyukov ◽  
Anton Surtaev ◽  
Oleg Volodin

This paper deals with the features of nucleation dynamics at boiling in falling water films at different subcooling, Reynolds number and heat fluxes. With the use of high-speed infrared and digital video the local parameters of nucleate boiling in falling liquid films such as: bubbles’ diameter before condensation, frequency of nucleation and temperature of onset of bubble appearance were received. Analysis of the experimental data showed that bubbles’ diameter before condensation has strong dependence on initial temperature and increases with the rise of heat flux. The main influence on nucleation frequency has the variation of heat flux density. At the same time the experimental data on nucleation frequency in falling water films are close to the frequency of nucleation at pool boiling. To identify the main features the comparison of received data on the local characteristics at boiling in subcooled falling liquid film with existing models for pool boiling was made

Author(s):  
Mohamed S. El-Genk ◽  
Jack L. Parker

Experiments are conducted that investigated pool boiling of FC-72 liquid at saturation and 10, 20, and 30 K subcooling on porous graphite and smooth copper surfaces measuring 10 × 10 mm. The nucleate boiling heat flux, Critical Heat Flux (CHF), and surface superheats at boiling incipience are compared. Theses heat fluxes are also compared with those of other investigators for smooth copper and silicon, etched SiO2, surfaces and micro-porous coating. No temperature excursion at boiling incipience on the porous graphite that occurred at a surface superheats of < 1.0 K. Conversely, the temperature excursions of 24.0 K and 12.4–17.8 K are measured at incipient boiling in saturation and subcooled boiling on copper. Nucleate boiling heat fluxes on porous graphite are significantly higher and corresponding surface superheats are much smaller than on copper. CHF on porous graphite (27.3, 39.6, 49.0, and 57.1 W/cm2 in saturation and 10 K, 20 K, and 30 K subcooled boiling, respectively) are 61.5%–207% higher than those on copper (16.9, 19.5, 23.6, and 28.0 W/cm2, respectively). The surface superheats at CHF on the porous graphite of 11.5 K in saturation and 17–20 K in subcooled boiling are significantly lower that those on copper (25 K and 26–28 K, respectively). In addition, the rate of increase of CHF on porous graphite with increased subcooling is ~ 125% higher than that on copper.


1973 ◽  
Vol 95 (4) ◽  
pp. 477-482 ◽  
Author(s):  
J. H. Lienhard ◽  
V. K. Dhir ◽  
D. M. Riherd

Experimental data obtained at both earth-normal and elevated gravity, in a variety of organic liquids and water, are used to verify the hydrodynamic theory for the peak pool boiling heat flux on flat plates. A modification of Zuber’s formula, which gives a 14 percent higher peak heat flux, is verified as long as the flat plate is more than three Taylor wavelengths across. For smaller heaters, the hydrodynamic theory requires a wide variation in heat flux owing to discontinuities in the number of escaping jets. Data for smaller plates bear out this predicted variation with heat fluxes that range between 40 percent and 235 percent of Zuber’s predicted value. Finally, a method is suggested for augmenting the peak heat flux on large heaters, and shown experimentally to be viable.


1993 ◽  
Vol 115 (1) ◽  
pp. 89-100 ◽  
Author(s):  
I. Mudawar ◽  
T. M. Anderson

A high flux electronic chip was numerically and experimentally simulated to investigate pool boiling capabilities of enhanced metallic surface attachments built upon a 12.7 × 12.7 mm2 base area. It is shown how experimental nucleate boiling data for a flat chip and for chips with low-profile microstructures can be used as input boundary conditions in the numerical prediction of boiling performances of high flux, smooth and microstructured extended cylindrical surfaces. A technique for extending the applicability of the numerical results to cylindrical fin arrays is demonstrated with the aid of experimental data obtained for these surfaces. Surface enhancement resulted in chip planform heat fluxes of 105.4 and 159.3 W/cm2, for saturated and 35°C subcooled FC-72, respectively.


Author(s):  
Abhishek Swarnkar ◽  
Vikas J. Lakhera

Pool boiling has been a research topic of great interest over the decades due to its inherent capabilities of large heat transfer rates with narrow temperature gaps and it advocates its suitability in a large number of industrial applications. The present paper describes the effect of operating pressure on pool boiling of R141b over a plain Cu surface as well as Si-coated surface prepared by a direct current (DC) sputtering technique. The working fluid R141b undergoes saturated pool boiling under pressure ranging from −20 kPa(g) to + 30 kPa(g) with the acquired experimental data and trends compared with the existing correlations and theories. Within the pressure range considered, the surface superheat variation was insignificant at lower heat fluxes; however, at higher heat fluxes, the maximum reduction was found to be by 9.5°C and 14.8°C for the plain Cu surface and Si-coated surface, respectively, regarding the corresponding values of −20 kPa(g) pressure. With respect to the results under atmospheric conditions, at the pressure of + 30 kPa(g), a corresponding increase in heat transfer coefficient of 12.1% for the plain Cu surface and of 17.8% for a Si-coated surface was observed at a heat flux of 225 kW/m2 and 272 kW/m2, respectively. In comparison to the results under atmospheric pressure conditions, the accompanying augmentation in the critical heat flux was observed as 13.3% for the plain Cu and 21.2% for the Si-coated surfaces at a pressure of + 30 kPa(g). Based on the experimental data, a correlation is developed for predicting heat transfer coefficients within the given pressure range.


2010 ◽  
Vol 132 (8) ◽  
Author(s):  
Seyed Ali Alavi Fazel ◽  
Seyed Baher Shafaee

Bubble dynamics is the most important subphenomenon, which basically affects the nucleate pool boiling heat transfer coefficient. Previous investigations state that the effect of physical properties of liquid and vapor phases on bubble departure diameter are often conflicting. In this article, extensive new experimental data are presented for the bubble departure diameter for various electrolyte aqueous solutions over a wide range of heat fluxes and concentrations. Experimental results show that the bubble detachment diameter increase with increasing either boiling heat flux or electrolyte concentration. Experimental results also present a close relation between the dimensionless capillary and bond numbers. A new model for the prediction of vapor bubble departure diameter in nucleate boiling for the electrolyte solutions is proposed, which predicts the experimental data with a satisfactory accuracy.


2014 ◽  
Vol 592-594 ◽  
pp. 1601-1606 ◽  
Author(s):  
Sameer Sheshrao Gajghate ◽  
Anil R. Aacharya ◽  
Anil T. Pise ◽  
Ganesh S. Jadhav

The addition of additives to the water is known to enhance boiling heat transfer. In the present investigation, boiling heat transfer coefficients are measured for Nichrome wire, immersed in saturated water with & without additive. An additive used is 2-Ethyl 1-Hexanol with varying concentrations in the range of 10-10000 ppm. Extensive experimentation of pool boiling is carried out above the critical heat flux. Boiling behavior i.e. bubble dynamics are observed at higher heat flux for nucleate boiling of water over wide ranges of concentration of additive in water. Results are encouraging and show that a small amount of surface active additive makes the nucleate boiling heat transfer coefficient considerably higher, and that there is an optimum additive (500-1000ppm) concentration for higher heat fluxes. An optimum level of enhancement is observed up to a certain amount of additive 500-1000ppm in the tested range. Thereafter significant enhancement is not observed. This enhancement may be due to change in thermo-physical properties i.e. mainly due to a reduction in surface tension of water in the presence of additive.


Author(s):  
Akshat Negi ◽  
Aniket M. Rishi ◽  
Satish G. Kandlikar

Abstract Boiling heat transfer is extensively used in various industrial applications to efficiently dissipate a large amount of heat by maintaining lower surface temperatures. The maximum heat flux dissipated during boiling is limited by the critical heat flux (CHF) and limited visualization of the boiling surface limits the identification of the impending CHF condition to rely on temperature monitoring alone. The study presented here focuses on developing a method for analyzing and identifying acoustic signatures throughout the nucleate boiling regimes that are indicative of the boiling state of the heater surface. The bubble nucleation and coalescence along with bubble collapse at the liquid-vapor interface leads to variation in acoustic emission patterns during boiling. These sound waves are studied and acoustic signatures that are representative of the impending CHF are identified over plain and enhanced copper substrates with water as the working fluid. During pool boiling study, it was observed that sound was dominant in two frequency regions (400–500 Hz dominant throughout nucleate boiling and 100–200 Hz dominant at heat fluxes > 100 W/cm2). However, just before CHF, a sudden drop in amplitude was observed in the high frequency region (400–500 Hz), while the amplitude in low frequency region (100–200 Hz) continued to rise. It was concluded that this acoustic study can be used as a tool to predict the approaching CHF condition.


Author(s):  
Vijaykumar Sathyamurthi ◽  
Debjyoti Banerjee

Saturated pool boiling experiments are conducted over silicon substrates with and without Multi-walled Carbon Nanotubes (MWCNT) with PF-5060 as the test fluid. Micro-fabricated thin film thermocouples located on the substrate acquire surface temperature fluctuation data at 1 kHz frequency. The high frequency surface temperature data is analyzed for the presence of chaotic dynamics. The shareware code, TISEAN© is used in analysis of the temperature time-series. Results show the presence of low-dimensional deterministic chaos, near Critical Heat Flux (CHF) and in some parts of the Fully Developed Nucleate Boiling (FDNB) regime. Some evidence of chaotic dynamics is also obtained for the film boiling regimes. Singular value decomposition is employed to generate pseudo-phase plots of the attractor. In contrast to previous studies involving multiple nucleation sites, the pseudo-phase plots show the presence of multi-fractal structure at high heat fluxes and in the film boiling regime. An estimate of invariant quantities such as correlation dimensions and Lyapunov exponents reveals the change in attractor geometry with heat flux levels. No significant impact of surface texturing is visible in terms of the invariant quantities.


Author(s):  
K-J Park ◽  
D Jung ◽  
S E Shim

In this work, nucleate pool boiling heat transfer coefficients (HTCs) of five refrigerants of differing vapour pressures are measured on a horizontal, smooth copper surface of 9.53×9.53 mm. The tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from 10 kW/m2 to the critical heat flux (CHF) of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool, respectively. Test results show that nucleate pool boiling HTCs of halogenated refrigerants increase as the heat flux and vapour pressure increase. This typical trend is maintained even at high heat fluxes above 200 kW/m2. Zuber's prediction equation for CHF is quite accurate showing a maximum deviation of 21 per cent for all refrigerants tested. For all refrigerants, Stephan and Abdelsalam's well-known correlation underpredicted nucleate boiling HTC data up to the CHF with an average deviation of 21.3 per cent, while Cooper's correlation overpredicted the data with an average deviation of 14.2 per cent. On the other hand, Gorenflo's and Jung et al.'s correlations showed 5.8 and 6.4 per cent deviations, respectively, in the entire nucleate boiling range up to the CHF.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Akshat Negi ◽  
Aniket M. Rishi ◽  
Satish G. Kandlikar

Abstract Boiling heat transfer is extensively used in various industrial applications to efficiently dissipate a large amount of heat by maintaining low surface to fluid temperature differences. The maximum heat flux dissipated during boiling is limited by the critical heat flux (CHF). Difficulties in visualizing the boiling process and monitoring surface temperature make it difficult to identify the impending CHF condition. As a result, larger factors of safety are employed, and the equipment is operated at considerably lower heat fluxes. This study focuses on identifying acoustic signatures of different nucleate boiling regimes. The bubble nucleation and coalescence along with bubble collapse lead to variation in acoustic emission patterns during boiling. In this work, acoustic signatures representative of the impending CHF condition are identified during pool boiling of water over plain and enhanced copper substrates. It was observed that sound was dominant in two frequency regions (400–500 Hz dominant throughout the nucleate boiling, and 100–200 Hz dominant at heat fluxes > 100 W/cm2). However, just before CHF, a sudden drop in amplitude was observed in the high frequency region (400–500 Hz), while the amplitude in low frequency region (100–200 Hz) continued to rise. This combination of the amplitude trend has potential to predict the approaching CHF condition. This is the first study that correlates high-speed images with the acoustic trends at different stages of nucleate boiling and compares experimental frequency with Minnaert frequency for coalescing bubbles.


Sign in / Sign up

Export Citation Format

Share Document