Development of a Novel Process Chain Based on Atomic Force Microscopy Scratching for Small and Medium Series Production of Polymer Nanostructured Components

Author(s):  
E. B. Brousseau ◽  
F. Krohs ◽  
E. Caillaud ◽  
S. Dimov ◽  
O. Gibaru ◽  
...  

The continuing trend for producing novel micro- and nanostructured devices and components in a broad range of materials is a major motivating factor driving the research in the micro- and nanomanufacturing sector toward developing innovative process chains. Some of such chains enable the serial production of micro- and nanostructured parts in polymer material by combining innovatively and optimizing simultaneously master making and replication technologies. For producing features at the nanoscale, the master making processes that are currently commonly employed rely on complex lithography-based pattern transfers and/or on beam-based direct write processes. Unfortunately, the required equipment to perform these techniques are often capital intensive and necessitate particular operating temperatures or vacuum conditions. At the same time, during the development phase of new or improved nanotechnology-enabled products, it is beneficial to produce rapidly polymer prototypes to test the functionality of components with nanoscale features. Thus, the technologies currently available for nanostructuring replication masters do not comply with the low cost requirements typically associated with the production of small batches of components for prototyping purposes. As a result, this could restrict the successful development of products with functional features at the nanoscale. In this research, a new process chain is presented for the fabrication of nanostructured components in polymer that relies on a simple and cost-effective master making technology. In particular, atomic force microscopy scratching is employed as an alternative technique for nanostructuring replication masters for microinjection molding. The conducted experimental study demonstrated the potential of this approach for small and medium series production of nanostructured devices in thermoplastic materials. In addition, the effects of different scratching parameters on the achievable surface roughness and depth of the patterned structures were analyzed by employing the design of experiments approach.

Author(s):  
Hyung Woo Lee ◽  
Soon Geun Kwon ◽  
Soo Hyun Kim ◽  
Yoon Keun Kwak ◽  
Chang Soo Han

We report a simple, low cost, reliable technique of making carbon nanotube (CNT) modified atomic force microscopy (AFM) tip. We used the dielectrophoresis and the electrophoresis to align and deposit carbon nanotubes on the end of the AFM tip. From the simulation and the various experiments, we obtained the optimal electric condition, 0.32Vpp/μm. Also, we found that the blunt shape of the tip’s apex is more effective than sharpened one. Through the experiments, we verified that the blunt shape is more effective over 50% than the sharpened one in the attachment of CNTs. By comparing the scanning results between the CNT modified tip and a normal AFM tip, we obtained the improvement in efficiency of 23%.


2000 ◽  
Author(s):  
Thomas Hantschel ◽  
Stefan Slesazeck ◽  
N. Duhayon ◽  
Mingwei Xu ◽  
Wilfried Vandervorst

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Arun Richard Chandrasekaran

A suite of functionalities and structural versatility makes DNA an apt material for biosensing applications. DNA-based biosensors are cost-effective and sensitive and have the potential to be used as point-of-care diagnostic tools. Along with robustness and biocompatibility, these sensors also provide multiple readout strategies. Depending on the functionality of DNA-based biosensors, a variety of output strategies have been reported: fluorescence- and FRET-based readout, nanoparticle-based colorimetry, spectroscopy-based techniques, electrochemical signaling, gel electrophoresis, and atomic force microscopy.


2019 ◽  
Vol 9 ◽  
pp. 223-229
Author(s):  
Faeze Qabel ◽  
Riehane Talaei ◽  
Saeedeh Saeedi ◽  
Raheb Ghorbani ◽  
Nazila Ameli

Purpose: Porcelain polishing after orthodontic bracket debonding and resin removal is imperative to eliminate surface roughness and minimize the risk of plaque accumulation, periodontal disease, and porcelain discoloration. This study aimed to assess the effect of three polishing systems on porcelain surface roughness after orthodontic bracket debonding. Materials and Methods: Thirty porcelain blocks were divided into three groups. Surface roughness of the samples was first measured using atomic force microscopy (AFM) and recorded as baseline. Orthodontic brackets were bonded to blocks by composite resin. After bracket debonding, resin remnants were removed by tungsten carbide bur. The blocks were then polished with Sof-Lex discs, Meisinger, and Jota porcelain polishing kit. Surface roughness was measured again using AFM. The Shapiro–Wilk test, one-way ANOVA, and Tukey’s post hoc test were used for data analysis through SPSS version 18.0. Level of significance was set at 5%. Results: The mean change in surface roughness after polishing with Jota kit (56.6 nm) was significantly greater than that compared to Sof-Lex discs (10.7 nm) (P = 0.003) and Meisinger kit (26.6 nm) (P = 0.024). The mean change in surface roughness was not significantly different between Sof-Lex and Meisinger groups. Surface roughness significantly increased in all three groups (P < 0.05). Conclusion: Meisinger polishing kit and Sof-Lex discs were not significantly different in terms of the resultant surface roughness. Thus, the conventional use of Sof-Lex discs seems to be more cost-effective due to their lower cost.


Author(s):  
Jingran Zhang ◽  
Yongda Yan ◽  
Zhenjiang Hu ◽  
Xuesen Zhao

The atomic force microscopy tip-based nanomechanical machining method has already been employed to machine different kinds of nanostructures with the control of the normal force of the tip. The previous studies verified the feasibility of the nanomachining approach with the force control. However, there are still some shortcomings of small normal force, small machining scale, high cost and low machining efficiency. Therefore, in this study, a tip-based micromachining system with normal force closed-loop control is established based on the principle of atomic force microscopy. The control parameters are optimized based on an analysis of the control process to enable the production of a constant normal force during machining when using a tip tool. The maximum machining velocity that can be attained using this system while maintaining a constant normal force is obtained based on an analysis of the normal force variations during machining. By controlling nanoscale accuracy and high-precision stage, more complex microstructures, including microsquares, millimeter-scale microchannels and three-dimensional step microchannels, are successfully fabricated using the proposed force control method. Experimental results show that the tip-based normal force control method is a simple, low-cost and versatile micromachining method with the potential ability to machine more complex structures and is likely to find wider applications in the micromachining field.


2003 ◽  
Vol 76 (6) ◽  
pp. 903-906 ◽  
Author(s):  
F.J. Rubio-Sierra ◽  
R.W. Stark ◽  
S. Thalhammer ◽  
W.M. Heckl

Sign in / Sign up

Export Citation Format

Share Document