Bubble Structures Between Two Walls in Ultrasonic Cavitation Erosion

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
A. Abouel-Kasem ◽  
S. M. Ahmed

The cavitation bubble structures for the stationary specimen method were clarified for various distances, h, between the stationary specimen and the horn-tip surface. The generated cavitation bubbles constituted a huge number of tiny bubbles and bubble clusters of different sizes. The maximum cluster size was 1.4 mm. The observed cavitation patterns systematically changed during tests from the subcavitating state to the supercavitating state with respect to the separation distance, h. For h <4 mm, the bubbles have a definite trajectory, and the pressure patterns manifest a circular shape as a result of streaming induced by ultrasonic cavitation. The feature morphology of the eroded surfaces revealed that the predominant failure mode was fatigue. In the light of the material failure features and the cavitation patterns, it is also deduced that the important mechanism to transfer the cavitation energy to the solid is shock pressures accompanied by collapsing clusters.

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1631
Author(s):  
Jingtao Zhao ◽  
Zongming Jiang ◽  
Jingwen Zhu ◽  
Junjia Zhang ◽  
Yinglong Li

Al and Al-5Ti alloys were manufactured by an ultrasonic casting method with a new device, and their ultrasonic cavitation erosion behaviors of Al and Al-5Ti alloys in the distilled water were clarified. The damage mechanism was analyzed by macro photograph, scanning electronic micrograph and three-dimensional morphology, and the results demonstrate that Al-5Ti alloys have better cavitation erosion resistance than Al in terms of the mass loss and the surface damage. The deformation mechanism of Al and Al-5Ti alloys under cavitation erosion is mainly dislocation slip, and the Al3Ti phase enhances the cavitation erosion resistance of Al-5Ti alloys. In addition, the maximum depth of cavitation pits in the Al-5Ti sample is less than that in the Al sample for 31.3%.


Author(s):  
Ion Mitelea ◽  
Cristian Ghera ◽  
Ilare Bordeaşu ◽  
Corneliu M. Crăciunescu

Sign in / Sign up

Export Citation Format

Share Document