Comparison of Elastic and Plastic Reference Volume Approaches

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
P. S. Reddy Gudimetla ◽  
Munaswamy Katna

For finding out reliable limit load multipliers in pressure vessel components or structures using simplified limit load methods, proper estimation of reference volume is important. In this paper, two empirical methods namely elastic reference volume method (ERVM) and plastic reference volume method (PRVM) for reference volume correction are presented and compared. These reference volume correction concepts are used in combination with mα-tangent method and elastic modulus adjustment procedure to achieve converged limit load multiplier solution. These multipliers are compared with nonlinear finite element analysis results and are found to be lower bounded. Elastic reference volume method is the simplest method for reference volume correction when compared to plastic reference volume method.

Author(s):  
P. S. Reddy Gudimetla ◽  
R. Seshadri ◽  
Munaswamy Katna

In this paper two novel methods (elastic reference volume method and plastic reference volume method) for reference volume correction while finding out limit loads in the components or structures are presented. These reference volume correction concepts are used in combination with mα-Tangent method to obtain the lower bound limit load of general component or structure.


2006 ◽  
Vol 129 (3) ◽  
pp. 391-399 ◽  
Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Cracks and flaws occur in mechanical components and structures, and can lead to catastrophic failures. Therefore, integrity assessment of components with defects is carried out. This paper describes the Elastic Modulus Adjustment Procedures (EMAP) employed herein to determine the limit load of components with cracks or crack-like flaw. On the basis of linear elastic Finite Element Analysis (FEA), by specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible distributions can be generated, to obtain lower and upper bounds limit loads. Due to the expected local plastic collapse, the reference volume concept is applied to identify the kinematically active and dead zones in the component. The Reference Volume Method is shown to yield a more accurate prediction of local limit loads. The limit load values are then compared with results obtained from inelastic FEA. The procedures are applied to a practical component with crack in order to verify their effectiveness in analyzing crack geometries. The analysis is then directed to geometries containing multiple cracks and three-dimensional defect in pressurized components.


Author(s):  
R. Adibi-Asl

The main objective of this paper is to determine the regions in a component or structure that directly participate in inelastic action (reference volume) using a new robust simplified method, namely the Elastic Modulus Adjustment Procedure (EMAP). The proposed method is based on iterative linear elastic finite element analysis that is implemented by modifying the local elastic modulus of the material at each subsequent iteration. The application of reference volume on optimum shape design is demonstrated through some practical examples including thick-walled cylinder, shank-head component and overlap joint weld. The results show that the reference volume concept can be used to optimize the shape of a body with respect to load carrying capacity and fatigue strength.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
P. S. Reddy Gudimetla ◽  
R. Adibi-Asl ◽  
R. Seshadri

In this paper, a method for determining limit loads in the components or structures by incorporating strain hardening effects is presented. This has been done by including a certain amount of the strain hardening into limit load analysis, which normally idealizes the material to be elastic perfectly plastic. Typical strain hardening curves such as bilinear hardening and Ramberg–Osgood material models are investigated. This paper also focuses on the plastic reference volume correction concept to determine the active volume participating in plastic collapse. The reference volume concept in combination with mα-tangent method is used to estimate lower-bound limit loads of different components. Lower-bound limit loads obtained compare well with the nonlinear finite element analysis results for several typical configurations with/without crack.


Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Cracks and flaws occur in mechanical components and structures, and can lead to catastrophic failures. Therefore, integrity assessment of components with defects is carried out. This paper describes the Elastic Modulus Adjustment Procedures (EMAP) employed herein to determine the limit load of components with cracks or crack-like flaw. On the basis of linear elastic Finite Element Analysis (FEA), by specifying spatial variations in the elastic modulus, numerous set of statically admissible and kinematically admissible distributions can be generated, to obtain lower and upper bounds limit loads. Due to the expected local plastic collapse, the reference volume concept is applied to identify the kinematically active and dead zones in the component. The Reference Volume Method is shown to yield a more accurate prediction of local limit loads. The limit load values are then compared with results obtained from inelastic finite element analysis. The procedures are applied to some practical components with cracks in order to verify their effectiveness in analyzing crack geometries. The analysis is then directed to geometries containing multiple cracks and three-dimensional defect in pressurized components.


Author(s):  
R. Adibi-Asl ◽  
M. M. Hossain ◽  
S. L. Mahmood ◽  
P. S. R. Gudimetla ◽  
R. Seshadri

Limit loads for pressure components are determined on the basis of a single linear elastic finite element analysis by invoking the concept of kinematically active (reference) volume in the context of the “mα-tangent” method. The resulting technique enables rapid determination of lower bound limit load for pressure components by eliminating the kinematically inactive volume. This method is applied to a number of practical components with different percentages of inactive volume. The results are compared with the corresponding inelastic finite element results, or available analytical solutions.


2003 ◽  
Vol 47 (02) ◽  
pp. 83-91
Author(s):  
L. Belenkiy ◽  
Y. Raskin

The paper examines an effect of shear forces on limit load for I-section beams carrying later alloads. The problem is solve don the basis of a physical model, which enables one to take into account the effect of a resistance of beam flanges to the plastic shears train in the web of the beam. The physical model for the evaluation of limit loads was veriŽed using nonlinear finite element analysis. An engineering technique for the calculation of limit loads for shiphull beams subjected to large shear forces was developed using this model. As illustrative examples, the paper shows the application of the proposed technique to obtain closed-form solutions for the prediction of limit loads.


Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Mura’s variational formulation for determining limit loads, originally developed as an alternative to classical methods, is extended further by allowing the pseudo-elastic distributions of stresses to lie outside the yield surface provided they satisfy the “integral mean of yield” criterion. Consequently, improved lower-bound and upper-bound values for limit loads are obtained. The mα estimation limit load method, reference volume method and the fitness for service assessment procedure (including corrosion damage and thermal hot spot damage), are all applications and extensions of the “integral mean of yield” criterion.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
S. L. Mahmood ◽  
R. Seshadri

In this paper, the mα-tangent multiplier is used in conjunction with the elastic modulus adjustment procedure (EMAP) for limit load determination. This technique is applied to a number of mechanical components possessing different kinematic redundancies. By specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible stress and strain distributions are generated, and limit loads for practical components are then determined using the mα-tangent method. The procedure ensures sufficiently accurate limit loads within a reasonable number of iterations. Results are compared with the inelastic finite element results and are found to be in satisfactory agreement.


2006 ◽  
Vol 129 (2) ◽  
pp. 296-305 ◽  
Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Several upper-bound limit-load multipliers based on elastic modulus adjustment procedures converge to the lowest upper-bound value after several linear elastic iterations. However, pressure component design requires the use of lower-bound multipliers. Local limit loads are obtained in this paper by invoking the concept of “reference volume” in conjunction with the mβ multiplier method. The lower-bound limit loads obtained compare well to inelastic finite element analysis results for several pressure component configurations.


Sign in / Sign up

Export Citation Format

Share Document